期刊文献+

大型机械设备低频故障信号检测仿真

Low-Frequency Fault Signal Detection Simulation for Large Mechanical Equipment
下载PDF
导出
摘要 研究大型机械设备故障检测精度优化问题。大型机械设备在横向振动的情况下,故障信号受到设备产生的横向振动的干扰,呈现信号低频化特征。传统的均值聚类方法在检测复杂大型设备故障时,由于信号低频化,要先进行故障收敛聚类,在收敛聚类过程中K均值算法没有考虑到低频信号相位近邻点的收敛特性,导致算法收敛太慢,检测时间过长,精度不高。提出了一种相位重组近邻点收敛的聚类算法,并有效应用到大组件机械设备故障检测中。聚类算法在传统的遗传K均值算法基础上,引入特征数据点之近邻点排除少数局部最优特征数据的干扰,通过近邻点收敛性的促进,提高了收敛速度,同时避免过早收敛到局部最优解中。仿真实验表明,改进的聚类算法收敛速度提高15.7%,故障检测有效识别率提高11.8%。 In this paper, the optimization problem of large machinery and equipment precision fault detection was studied. In the case of lateral vibration of large-scale machinery and equipment, fault signals are interference generated by equipment lateral vibration, which shows the low frequency of the signal characteristics. This paper presented a clustering algorithm based on the phase neighbor point restructuring convergence. Based on traditional genetic K- means algorithm, the neighbor' s point of feature data points was introduced to the clustering algorithm, and a small number of local optima and interference characteristics of the data were eliminated. By promoting the convergence of neighboring points, the convergence rate was improved, avoiding the premature convergence to local optimal solution. Simulation results show that the convergence rate of the improved clustering algorithm can be improved by 15.7%, and effective recognition rate of fault detection by 11.8%.
出处 《计算机仿真》 CSCD 北大核心 2014年第7期225-228,共4页 Computer Simulation
关键词 相位重组 近邻点 数据聚类 故障检测 Phase reconstruction Nearest neighbor Data clustering Fault detection
  • 相关文献

参考文献9

二级参考文献34

  • 1杜恩祥,李科杰.基于多重分形和小波变换的声目标信号特征提取[J].自动化学报,2004,30(5):742-746. 被引量:8
  • 2王兴华,韩丹夫.弱条件下的α判据和Newton法[J].计算数学,1997,19(1):103-112. 被引量:18
  • 3Chen Dong,Argyros I K, Qian Q s. A note on the Halley method in Banach spaces[J]. Appl Math Comput, 1993,58(2/3 ) :215-224.
  • 4Argyros I K, Chen Dong. Results on the Chebyshev method in Banach spaces [J]. Proyecciones, 1993,12 ( 2 ) : 119-128.
  • 5Gutierrez J, Hernandez M. Recurrence relationss for super-Halley method [ J ]. J Comput Math Appl, 1998,36 (7) :1-8.
  • 6Sharma J R. A composite third order Newton-Steffensen method for solving nonlinear equations [ J ]. Appl Math Comput, 2005,169 ( 1 ) : 242-246.
  • 7Frontini M, Sormani E. Some variant of Newton's method with third-order convergence[ J]. Appl Math Comput,2003,140 (2/3) :419-426.
  • 8Homeier H. A modified Newton method for rootfinding with cubic convergence[J]. J Comput Appl Math ,2003,157 ( 1 ):227-230.
  • 9Ozban A Y. Some new variants of Newton method[ J ]. Appl Math Lett,2004,17 (6) :677-682.
  • 10Argyros I K. On Newton's method under mild differentiability conditins and applications [ J ]. Appl Math Comput, 1999,102 (2/3) :177-183.

共引文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部