期刊文献+

Ramanujan-type congruences for broken 2-diamond partitions modulo 3

Ramanujan-type congruences for broken 2-diamond partitions modulo 3
原文传递
导出
摘要 The notion of broken k-diamond partitions was introduced by Andrews and Paule.Let△k(n)denote the number of broken k-diamond partitions of n.Andrews and Paule also posed three conjectures on the congruences of△2(n)modulo 2,5 and 25.Hirschhorn and Sellers proved the conjectures for modulo 2,and Chan proved the two cases of modulo 5.For the case of modulo 3,Radu and Sellers obtained an infinite family of congruences for△2(n).In this paper,we obtain two infinite families of congruences for△2(n)modulo 3 based on a formula of Radu and Sellers,a 3-dissection formula of the generating function of triangular number due to Berndt,and the properties of the U-operator,the V-operator,the Hecke operator and the Hecke eigenform.For example,we find that△2(243n+142)≡△2(243n+223)≡0(mod 3).The infinite family of Radu and Sellers and the two infinite families derived in this paper have two congruences in common,namely,△2(27n+16)≡△2(27n+25)≡0(mod 3). The notion of broken k-diamond partitions was introduced by Andrews and Paule.Let△k(n)denote the number of broken k-diamond partitions of n.Andrews and Paule also posed three conjectures on the congruences of△2(n)modulo 2,5 and 25.Hirschhorn and Sellers proved the conjectures for modulo 2,and Chan proved the two cases of modulo 5.For the case of modulo 3,Radu and Sellers obtained an infinite family of congruences for△2(n).In this paper,we obtain two infinite families of congruences for△2(n)modulo 3 based on a formula of Radu and Sellers,a 3-dissection formula of the generating function of triangular number due to Berndt,and the properties of the U-operator,the V-operator,the Hecke operator and the Hecke eigenform.For example,we find that△2(243n+142)≡△2(243n+223)≡0(mod 3).The infinite family of Radu and Sellers and the two infinite families derived in this paper have two congruences in common,namely,△2(27n+16)≡△2(27n+25)≡0(mod 3).
出处 《Science China Mathematics》 SCIE 2014年第8期1553-1560,共8页 中国科学:数学(英文版)
基金 supported by National Basic Research Program of China (973 Project) (Grant No. 2011CB808003) the PCSIRT Project of the Ministry of Education National Natural Science Foundation of China (Grant No. 11231004)
关键词 broken k-diamond partition modular form Ramanujan-type congruence Hecke eigenform 金刚石 同余 分区 钻模 拉马 安德鲁斯 无限族 三角形数
  • 相关文献

参考文献12

  • 1Andrews G E, Paule P. Macmahon's partition analysis XI: Broken diamonds and modular forms. Acta Arith, 2007 126:281-294.
  • 2Berndt B C. Ramanujan's Notebooks, Part III. New York: Springer-Verlag, 1991.
  • 3Chan H H, Cooper S, Liaw W-C. An odd square as a sum of an odd number of odd squares. Acta Arith, 2008, 132 359 -371.
  • 4Chan S H. Some congruences for Andrews-Paule's broken 2-diamond partitions. Discrete Math, 2008, 308:5735-5741.
  • 5Fu S S. Combinatorial proof of one congruence for the broken 1-diamond partition and a generalization. Int J Number Theory, 2011, 7:133-144.
  • 6Hirschhorn M D, Sellers J A. On recent congruence results of Andrews and Paule for broken k-diamonds. Bull Aust Math Soc, 2007, 75:121-126.
  • 7Jameson M. Congruences for broken a:-diamond partitions. Ann Combin, 2013, 17:333-338.
  • 8Mortenson E. On the broken l-diamond partition. Int J Number Theory, 2008, 4:199 -218.
  • 9Ono K. The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series. CBMS Regional Conference Series in Mathematics, vol. 102. Providence, RI: Amer Math Soc, 2004.
  • 10Paule P, Radu S. Infinite families of strange partition congruences for broken 2-diamonds. Ramanujan J, 2010, 23: 409-416.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部