期刊文献+

Wiener measure for Heisenberg group 被引量:1

Wiener measure for Heisenberg group
原文传递
导出
摘要 We build Wiener measure for the path space on the Heisenberg group by using of the heat kernel corresponding to the sub-Laplacian and give the definition of the Wiener integral.Then we give the FeynmanKac formula. We build Wiener measure for the path space on the Heisenberg group by using of the heat kernel corresponding to the sub-Laplacian and give the definition of the Wiener integral. Then we give the FeynmanKac formula.
出处 《Science China Mathematics》 SCIE 2014年第8期1605-1614,共10页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10990012) 50-Class General Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2011M501317)
关键词 Heisenberg group C-C distance sub-Laplacian operator Wiener measure Feynman-Kac formula Heisenberg群 维纳 拉普拉斯 路径空间 海森堡 积分
  • 相关文献

参考文献8

  • 1Gaveau B. Principe de moindre action, propagation de la chaleur et estimées sons elliptiques sur certains groupes nilpolents. Acta Math, 1977, 139:95- 153.
  • 2Hsu E P, Ouyang C. Quasi-invariance of the Wiener ineasure oil the path space over a complete Fliemannian manifold. J Funct Anal, 2009, 257:1379 -1395.
  • 3Hulanicki A. The distribution of energy in the Brownian motion in tile Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math, 1976, 56:165 -173.
  • 4Kac M. Wiener and integration in function spaces. Bull Amcr Math Soc, 1966, 72:52- 68.
  • 5Korgnyi A. Geometric properties of Heisenberg-type groups. Adv Math, 1985, 56:28- 38.
  • 6Ryu K S. Integration with respect to analogue of YViener measure over paths in abstract Wiener space and its appli- cations. Bull Korean Math Soc, 2010, 47:131-149.
  • 7Sadovnichaya I V. A representation of the solution of the stochastic Schredinger equation by means of an integral with respect to the Wiener measure (in Russian). Fundamam Prikl Mat, 1998, 4:659-667.
  • 8Varopoulos N T, Saloff-Coste L, Coulhon T. Analysis and Geometry on Groups. Camhridge: Cambridge University Press. 1992.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部