期刊文献+

Mean width inequalities for symmetric Wulff shapes

Mean width inequalities for symmetric Wulff shapes
原文传递
导出
摘要 We establish the mean width inequalities for symmetric Wulff shapes by a direct approach.We also yield the dual inequality along with the equality conditions.These new inequalities have Barthe’s mean width inequalities for even isotropic measures and its dual form as special cases. We establish the mean width inequalities for symmetric Wulff shapes by a direct approach. We also yield the dual inequality along with the equality conditions. These new inequalities have Barthe's mean width inequalities for even isotropic measures and its dual form as special cases.
出处 《Science China Mathematics》 SCIE 2014年第8期1649-1656,共8页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 11271244) Shanghai Leading Academic Discipline Project (Grant No. S30104)
关键词 isotropic measure Wulff shape mean width Ball-Barthe inequalities 平均宽度 不等式 形状 对称 对偶形式 各向同性
  • 相关文献

参考文献20

  • 1Ball K. Volumes of sections of cubes and related problems. In: Israel Seminar on Geometric Aspects of l~mctional Analysis. Lect Notes in Mathematics, vol. 1376. Berlin: Springer-Verlag, 1989, 251 -260.
  • 2Ball K. Volume ratios and a reverse isoperimetric inequality. J London Math Soc, 1991, 44:351- 359.
  • 3Barthe F. An extremal property of the mean width of the simplex. Math Ann, 1998, 310:685- 693.
  • 4Barthe F. On a reverse form of the Braseamp-Lieb inequality. Invent Math, 1998, 134:335- 361.
  • 5Barthe F. A continuous version of the Brascamp-Lieb inequalities. In: Milman V D, Schechtman G, eds. Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1850. Berlin: Springer-Verlag, 2004, 53-63.
  • 6Figalli A, Maggi F. On the shape of liquid drops and crystals in the small mass regime. Arch Ration Mech Anal, 2011, 201:143-207.
  • 7Gardner R J. The Brunn-Minkowski inequality. Bull Amer Math Soc, 2002, 39:355-405.
  • 8Gardner R J. Geometric Tomography, 2rid ed. Cambridge: Cambridge University Press, 2006.
  • 9Haberl C, Lutwak E, Yang D, et al. The even Orlicz Minkowski problem. Adv Math, 2010, 224:2485-2510.
  • 10Huang Q Z, He B W. Gaussian inequalities for Wulff shapes. Geom Dedicata, 2013, 2013:1-15.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部