期刊文献+

Convergence of Yang-Mills-Higgs flow for twist Higgs pairs on Riemann surfaces 被引量:1

Convergence of Yang-Mills-Higgs flow for twist Higgs pairs on Riemann surfaces
原文传递
导出
摘要 We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E,H)over Riemann surface X.It is already known the gradient flow with initial data(A0,φ0)converges to a critical point(A∞,φ∞).Using a modified Chern-Weil type inequality,we prove that the limiting twist Higgs bundle(E,d′′A∞,φ∞)coincides with the graded twist Higgs bundle defined by the HarderNarasimhan-Seshadri filtration of the initial twist Higgs bundle(E,d′′A0,φ0),generalizing Wilkin’s results for untwist Higgs bundle. We consider the gradient flow of the Yang-Mills-Higgs functional of twist Higgs pairs on a Hermitian vector bundle(E, H) over Riemann surface X. It is already known the gradient flow with initial data(A0, φ0) converges to a critical point(A∞, φ∞). Using a modified Chern-Weil type inequality, we prove that the limiting twist Higgs bundle(E, d"A∞, φ∞) coincides with the graded twist Higgs bundle defined by the HarderNarasimhan-Seshadri filtration of the initial twist Higgs bundle(E, d"A0, φ0), generalizing Wilkin's results for untwist Higgs bundle.
作者 ZHANG Wei
出处 《Science China Mathematics》 SCIE 2014年第8期1657-1670,共14页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11101393 and 11201447)
关键词 twist Higgs bundle Yang-Mills-Higgs flow Harder-Narasimhan-Seshadri filtration Chern-Weil formula 扭曲 黎曼曲面 收敛 粒子流 埃尔米特 梯度流 向量丛 黎曼面
  • 相关文献

参考文献17

  • 1Atiyah M F, Bott R. The Yang-Mills equations over Riemann surfaces. Philos Trans R Soe Lond Ser A, 1982, 308: 523-615.
  • 2Bradlow S, Daskalopoulos G, Garcla-Prada O, et al. Stable augmented bundles over Riemann surfaces. In: Vector Bundles in Algebraic Geometry. Cambridge: Cambridge University Press, 1995, 15 -77.
  • 3Collins T, Jacob A. On the bubbling set of the Yang-Mills flow on a compact Kahler manifold. ArXiv:1206.6790, 2012.
  • 4Daskalopoulos G, Wentworth R. Covergence properties of the Yang-Mills flow on Kghler surfaces. J Reine Angew Math, 2004, 575:69-99.
  • 5Donaldson S K. Anti self-dual Yang-Mills conuections over complex algebraic surfaces and stable vector bundles. Proc Lond Math Soc, 1985, 50:1- 26.
  • 6Hausel T, Thaddeus M. Mirror symmetry, Langlands duality, and the Hitchin system. Invent Math, 2003, 153:197-229.
  • 7Hausel T, Thaddeus M. Generators for the cohomology ring of the moduli space of rank 2 Higgs bundles. Proc Lond Math Soc, 2004, 8:632-658.
  • 8Hitchin N. The self-duality equations on a Riemann surface. Proc London Math Soc, 1987, 55:59 -126.
  • 9Hong M C. Heat Flow for the Yang-Mills-Higgs Field and the Hermitian Yang-Mills-Higgs Metric. Ann Global Anal Geom, 2001, 20:23-46.
  • 10Kobayashi S. Differential Geometry of Complex Vector Bundles. Tokyo: Iwanami Shoten, 1987.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部