期刊文献+

What can we learn from the tension between PLANCK and BICEP2 data? 被引量:2

What can we learn from the tension between PLANCK and BICEP2 data?
原文传递
导出
摘要 Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level. In light of the results of B-modes power spectrum from BICEP2 and using the based ACDM, a constraint on the tensor-to-scalar ratio r = 0.20-0.05+0.07 (68% C.L.) can be obtained, however, this result is in apparent tension with the limit on standard inflation models from the recent PLANCK measurement, r 〈 0.11 (95% C.L.). Herein we review the recent progress on the cosmological studies after BICEP2 and discuss on different ways of reconciling the tension between PLANCK and BICEP2 data. We will discuss possible modifications on the standard cosmological model, such as including the running of scalar spectral index or other cosmological parameters correlated with inflationary cosmological parameters, or tilting the primordial power spectrum at large scales by introducing a cut off which can be predicted by bouncing cosmology. We will also comment on another possibility of generating extra B-modes of CMB polarization, namely by a non-zero polarization rotation angle during its transferring from the last scattering surface. Recently BICEP2 collaboration has announced the detection of the primordial gravitational waves at high confidence level.In light of the results of B-modes power spectrum from BICEP2 and using the basedΛCDM,a constraint on the tensor-to-scalar ratio r=0.20+0.07-0.05(68%C.L.)can be obtained,however,this result is in apparent tension with the limit on standard inflation models from the recent PLANCK measurement,r<0.11(95%C.L.).Herein we review the recent progress on the cosmological studies after BICEP2 and discuss on different ways of reconciling the tension between PLANCK and BICEP2 data.We will discuss possible modifications on the standard cosmological model,such as including the running of scalar spectral index or other cosmological parameters correlated with inflationary cosmological parameters,or tilting the primordial power spectrum at large scales by introducing a cut off which can be predicted by bouncing cosmology.We will also comment on another possibility of generating extra B-modes of CMB polarization,namely by a non-zero polarization rotation angle during its transferring from the last scattering surface.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第8期1431-1441,共11页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos. 11033005, 11322325, 11075074, 11121092, 11033005 and 11375202) the National Basic Research Program of China (Grant No. 2010CB83300) the Program for New Century Excellent Talents in University the National Youth Thousand Talents Program and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences (Grant No. XDB09000000)
关键词 cosmology parameters cosmic microwave background early Universe CPT symmetry 普朗克 标准宇宙模型 宇宙学参数 学习 高置信度 运行情况 通货膨胀 回弹预测
  • 相关文献

参考文献1

二级参考文献148

  • 1BICEP2 Collaboration. BICEP2 I: Detection of B-mode polarization at degree angular scales, arXiv: 1403.3985 [astro-ph.CO].
  • 2Planck Collaboration. Planck 2013 results. XVI. Cosmological pa- rameters, arXiv:1303.5076 [astro-ph.CO].
  • 3Guth A H. The inflationary universe: A possible solution to the hori- zon and flatness problems. Phys Rev D, 1981, 23(2): 347.
  • 4Linde A D. A new inflationary universe scenario: A possible solu- tion of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys Lett B, 1982, 108(6): 389-393.
  • 5Albrecht A, Steinhardt P J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys Rev Lett, 1982, 48: 1220-1223.
  • 6Starobinsky A A. A new type of isotropic cosmological models with- out singularity. Phys Lett B, 1980, 91 : 99-102.
  • 7Fang L Z. Entropy generation in the early universe by dissipative pro- cesses near the Higgs' phase transitions. Phys Lett B, 1980, 95: 154- 156.
  • 8Sato K. First order phase transition of a vacuum and expansion of the universe. Mon Not Roy Astron Soc, 1981, 195:467-479.
  • 9Starobinsky A A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett, 1979, 30:682-685.
  • 10Gasperini M, Veneziano G. Pre-big bang in string cosmology. As- tropart Phys, 1993, 1: 317-339.

共引文献4

同被引文献7

引证文献2

二级引证文献1

  • 1K.A.Olive,K.Agashe,C.Amsler,M.Antonelli,J.-F.Arguin,D.M.Asner,H.Baer,H.R.Band,R.M.Barnett,T.Basaglia,C.W.Bauer,J.J.Beatty,V.I.Belousov,J.Beringer,G.Bernardi,S.Bethke,H.Bichsel,O.Biebe,E.Blucher,S.Blusk,G.Brooijmans,O.Buchmueller,V.Burkert,M.A.Bychkov,R.N.Cahn,M.Carena,A.Ceccucci,A.Cerr,D.Chakraborty,M.-C.Chen,R.S.Chivukula,K.Copic,G.Cowan,O.Dahl,G.D'Ambrosio,T.Damour,D.de Florian,A.de Gouvea,T.DeGrand,P.de Jong,G.Dissertor,B.A.Dobrescu,M.Doser,M.Drees,H.K.Dreiner,D.A.Edwards,S.Eidelman,J.Erler,V.V.Ezhela,W.Fetscher,B.D.Fields,B.Foster,A.Freitas,T.K.Gaisser,H.Gallagher,L.Garren,H.-J.Gerber,G.Gerbier,T.Gershon,T.Gherghetta,S.Golwala,M.Goodman,C.Grab,A.V.Gritsan,C.Grojean,D.E.Groom,M.Grnewald,A.Gurtu,T.Gutsche,H.E.Haber,K.Hagiwara,C.Hanhart,S.Hashimoto,Y.Hayato,K.G.Hayes,M.Heffner,B.Heltsley,J.J.Hernandez-Rey,K.Hikasa,A.Hocker,J.Holder,A.Holtkamp,J.Huston,J.D.Jackson,K.F.Johnson,T.Junk,M.Kado,D.Karlen,U.F.Katz,S.R.Klein,E.Klempt,R.V.Kowalewski,F.Krauss,M.Kreps,B.Krusche,Yu.V.Kuyanov,Y.Kwon,O.Lahav,J.Laiho,P.Langacker,A.Liddle,Z.Ligeti,C.-J.Lin,T.M.Liss,L.Littenberg,K.S.Lugovsky,S.B.Lugovsky,F.Maltoni,T.Mannel,A.V.Manohar,W.J.Marciano,A.D.Martin,A.Masoni,J.Matthews,D.Milstead,P.Molaro,K.Monig,F.Moortgat,M.J.Mortonson,H.Murayama,K.Nakamura,M.Narain,P.Nason,S.Navas,M.Neubert,P.Nevski,Y.Nir,L.Pape,J.Parsons,C.Patrignani,J.A.Peacock,M.Pennington,S.T.Petcov,Kavli IPMU,A.Piepke,A.Pomarol,A.Quadt,S.Raby,J.Rademacker,G.Raffel,B.N.Ratcliff,P.Richardson,A.Ringwald,S.Roesler,S.Rolli,A.Romaniouk,L.J.Rosenberg,J,L.Rosner,G.Rybka,C.T.Sachrajda,Y.Sakai,G.P.Salam,S.Sarkar,F.Sauli,O.Schneider,K.Scholberg,D.Scott,V.Sharma,S.R.Sharpe,M.Silari,T.Sjostrand,P.Skands,J.G.Smith,G.F.Smoot,S.Spanier,H.Spieler,C.Spiering,A.Stahl,T.Stanev,S.L.Stone,T.Sumiyoshi,M.J.Syphers,F.Takahashi,M.Tanabashi,J.Terning,L.Tiator,M.Titov,N.P.Tkachenko,N.A.Tornqvist,D.Tovey,G.Valencia,G.Venanzoni,M.G.Vincter,P.Vogel,A.Vogt,S.P.Wakely,W.Walkowiak,C.W.Walter,D.R.Ward,G.Weiglein,D.H.Weinberg,E.J.Weinberg,M.White,L.R.Wiencke,C.G.Wohl,L.Wolfenstein,J.Womersley,C.L.Woody,R.L.Workman,A.Yamamoto,W.-M.Yao,G.P.Zeller,O.V.Zenin,J.Zhang,R.-Y.Zhu,F.Zimmermann,P.A.Zyla,G.Harper,V.S.Lugovsky,P.Schaffner.REVIEW OF PARTICLE PHYSICS[J].Chinese Physics C,2014,38(9):1-4. 被引量:15
  • 2董秋霞.一种测量普朗克常数的简易方法[J].物理通报,1996,17(2):20-21.
  • 3Yilun SHANG.CONSENSUS FORMATION OF TWO-LEVEL OPINION DYNAMICS[J].Acta Mathematica Scientia,2014,34(4):1029-1040. 被引量:1
  • 4M. I. Wanas,Gamal G. L. Nashed,A. A. Nowaya.Cosmological applications in Kaluza-Klein theory[J].Chinese Physics B,2012,21(4):631-637.
  • 5颜林灿,徐秉业.非线性弹性卸载对回弹预测的影响[J].力学与实践,2002,24(3):41-44. 被引量:5
  • 6Ji-Xia Li,Feng-Quan Wu,Yi-Chao Li,Yan Gong,Xue-Lei Chen.Cosmological constraint on Brans-Dicke Model[J].Research in Astronomy and Astrophysics,2015,15(12):2151-2163.
  • 7本刊讯.透过模糊相片来识别个体的人脸识别算法[J].中国公共安全,2016,0(15):24-24.
  • 8李艳青,智丽丽,陈惠敏.Origin在普朗克常数测量实验数据处理中的应用[J].昌吉学院学报,2014(3):78-81. 被引量:4
  • 9王景衡,李雅轩.光电效应法测量普朗克常数实验数据采集与处理系统的研制[J].天津工业大学学报,2004,23(6):86-88. 被引量:2
  • 10徐岩,秦波.基于人工智能技术的板料冲压成形回弹预测研究方法探析[J].电子制作,2014,22(19):41-41. 被引量:2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部