期刊文献+

热点分析在国情监测数据分析中的应用初探 被引量:10

The Application of Hotspot Analysis in National Geographic Condition Monitoring Data Analysis
下载PDF
导出
摘要 进行地理国情监测是为了使管理部门及时掌握不断变化的自然以及人文环境的变迁信息。地理国情监测包括数据的采集、存储、统计和分析等多项内容。其中数据分析包括对数据基本统计分析以及数据挖掘。作为深层次数据分析和挖掘的有效工具,空间聚类分析可以很好地分析数据之间的内在联系。本文选用热点分析,对规划容积率与土地利用数据进行分析,得到规划数据的空间聚集性结果与土地利用数据之间的关系,为地理国情监测数据分析提供参考。 The purpose ofnational geographic condition monitoring is to achieve the changing information of natural and human environment for the government administration .The content of national geographic condition monitoring contains data collection , storage, statistics and data analysis .Data analysis includes basic data statistical analysis and data mining .As an improving data analysis and statistic tool, spatial clustering analysis is a good method to analyze the connections of data .This paper analyzed relationships between volume rate data and land use data and get affiliations between the clustering characteristics of city planning data and land use data , and proposed references to the analysis of national geographic condition monitoring results .
机构地区 天津市测绘院
出处 《测绘与空间地理信息》 2014年第6期84-85,88,91,共4页 Geomatics & Spatial Information Technology
关键词 国情监测 3S 空间聚类分析 热点分析 national geographic condition monitoring 3S spatial clustering analysis hotspot analysis
  • 相关文献

参考文献6

二级参考文献64

  • 1何建邦,田国良.中国重大自然灾害监测与评估信息系统的建设与应用[J].自然灾害学报,1996,5(3):1-7. 被引量:25
  • 2George K, Han Eui-Hong, Kumar V. CHAMELEON:A Hierarchincal Clustering Algorithm Using Dynamic Modeling [J]. IEEE Computer, 1999(8):68- 75.
  • 3Martin E, Kriegel H P, Sander J, et al. A Density - Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[ C]//In: Proc. of the 2nd International conference on Knowledge Discovery and Data Mining (KDD-96). Port-land,Oregon: [s. n. ], 1996.
  • 4Ankerst M, Breunig M, Kriegel H P, et al. OPTICS: Ordering Points to Identify the Clustering Structure[ C]//In: Proc. 1999 ACM SIGMOD Int. Conf. on Management of Data (DIGMOD'99). Philadelphia, PA: [ s. n. ], 1999 : 49 - 60.
  • 5Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise[C]//In:Proc. 1998 Int. Conf. Knowledge Discovery and Data Mining ( KDD'98). New York:[ s. n. ], 1998.
  • 6Wang W, Yang J, Muntz R. STING: A statistical information grid approach to spatial data mining[C]//In: Proc. 1997 Int Conf. Very Large Data Bases(VLDB'97). Athens,Greece: [s. n. ], 1997:186 - 195.
  • 7Sheikholeslami G, Chatterjee S, Zhang A. WaveCluster: A multi- resolution cluztering approach for very large spatial database[C]//In:the 24th Int. Conf. Very Large Data Bases (VLDB'98). New York City: [s. n. ], 1998:428 - 439.
  • 8Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining applications[C]//In Proc. ACM- SIGMOD Int. Conf. Management of Data(SIGMOD' 98). Seattle, WA: [s. n. ], 1998:94 - 105.
  • 9Fisher D. Improving inference through conceptual clustering [C]//In Proc. AAAI Conf. Seattle,WA: [s. n. ], 1987:461 - 465.
  • 10Kohonen T. Self - Organizing Maps[ M ]. Berlin: Springer, 1995.

共引文献19

同被引文献122

引证文献10

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部