期刊文献+

神经网络预测储层砂岩粒度纵向剖面 被引量:1

Using neural network to predict vertical profile of grain size of reservoir sandstone
下载PDF
导出
摘要 国内外多年的研究认为,储层粒度特征值(d50,UC)是防砂设计的基础。利用伽马测井、密度测井与粒度特征值之间的相关性,建立探井伽马、密度测井项与实测粒度特征值三者的样本库;利用神经网络技术,训练出满足工程需要的学习网络,进而结合开发区块的测井资料,建立整个储层的粒度纵向分布剖面。该技术对实测数据少或缺乏实测数据储层的防砂显得尤为重要,为防砂方案设计提供了准确的依据,并在现场进行了很好的应用。 Research scholars believe that the characteristic values (d50,UC) of reservoir grain size is the design basis for sand control completion.Based on the relevance of gamma logging,density logging to the grain size characteristic values,we established the sample library of wells gamma,density log and grain size values.Using neural network technology,the learning network project was trained,then combined with logging data development block,the vertical profiles of entire reservoir grain size was established.This technology is very important to sand control completion for the reservoir lack of grain size data.It provides an accurate basis for project design and has a good application effect in the field.
出处 《断块油气田》 CAS 2014年第4期449-452,共4页 Fault-Block Oil & Gas Field
基金 国家油气重大专项课题"多枝导流适度出砂技术"(2008ZX05024-003-01)
关键词 粒度特征值 测井项 神经网络 样本库 纵向剖面 grain size characteristic value logging date neural network sample library vertical profile
  • 相关文献

参考文献12

  • 1Hamada G M ,Elshafei M A. Neural network prediction of porosity and permeability of heterogeneous gas sand reservoirs [ R ]. SPE 126042, 2009.
  • 2Singh S. Permeability prediction using Artificial Neural Network (ANN) : A case study of Uinta Basin I[R]. SPE 99286,2005.
  • 3Wong P M ,Brooks L J. Permeability determination using neuranl networks in the Rawa Field ,Offshore India[R]. SPE 38034,1998.
  • 4Oyeneyin B M,Faga A T. Formation-grain-size prediction whilst drilling: A key factor in intelligent sand control completions [R]. SPE 56626, 1999.
  • 5Faga A T,Oyeneyin B M. Application of neural networks for improved gravel pack design [ R ]. SPE 58722,2000.
  • 6Faga A T, Oyeneyin B M. Effects of diagenisis on neural-network grain- size prediction [ R ]. SPE 60305,2000.
  • 7周开红,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
  • 8Saucier R J. Considerations in gravel pack design[R]. SPE 4030,1974.
  • 9Tiffin C L,King G E,Larese R E,et al. New criteria for gravel and screen selection for sand control[ R 1. SPE 59457,1998.
  • 10Gillespie G,Deem C K,Malbrel C. Screen selection for sand control based on laboratory tests[R]. SPE 64398,2000.

二级参考文献24

  • 1赵东伟,董长银,张琪.砾石尺寸评价与优选方法研究[J].石油钻探技术,2004,32(4):63-65. 被引量:22
  • 2田红,邓金根,孟艳山,曾祥林,孙福街.渤海稠油油藏出砂规律室内模拟实验研究[J].石油学报,2005,26(4):85-87. 被引量:48
  • 3王治中,田红,邓金根,汤少兵,石丽娟.利用出砂管理技术提高油井产能[J].石油钻采工艺,2006,28(3):59-63. 被引量:15
  • 4Saucier R J. Considerations in gravel pack design[R]. SPE 4030, 1974.
  • 5Tiffin C L, King G E, Larese R E, et al. New criteria for gravel and screen selection for sand control[R]. SPE 39437,1998.
  • 6Gillespie G,Deem C K,Malbrel C. Screen selection for sand control based on laboratory tests[R]. SPE 64398,2000.
  • 7Selfridge F, Munday M, Kvernvold O. Safely improving produc tion performance through improved sandmanagement[R]. SPE 83979,2003.
  • 8Mcphee C A, Enzendorfer C K. Sandmanagement solution for high-rate gas wells Sawan field,Pakistan[R]. SPE 86535,2004.
  • 9Walton I C,Atwood D C, Halleck P M, et al. Perforating uneon solidated sand: an experimental and theoretical investigation[J]. SPE Drilling and Completion,2002,17(3) : 141-150.
  • 10Gillespie G,Deem C K, Malbrel C. Screen selection for sand control based on laboratory tests[R]. SPE 64398,2000.

共引文献61

同被引文献18

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部