期刊文献+

局部约束组稀疏表示的步态识别方法

Locality constrained group sparse representation for gait recognition
下载PDF
导出
摘要 提出一种局部约束组稀疏表示的步态识别方法。通过预处理提取人体二值化侧影图,计算步态周期并利用HS(Horn-Schunck)算法生成步态光流图,经降维后利用局部约束组稀疏表示的方法进行分类识别。在标准稀疏表示分类方法的基础上,引入了组稀疏约束和局部平滑稀疏约束,使其最小重构误差的非零重构系数分散在与测试样本相邻的同一训练类别组内。在CASIA Dataset B数据库上的实验结果表明,该方法有较高的识别率。 A locality constrained group sparse representation for human gait recognition was presented.First a preprocess tech-nique was used to segment the human silhouette from the walking videos,then gait period was calculated and gait optical flow image was generated by HS algorithm,after dimension reduction,the GFI was classified using locality constrained group sparse representation.The method introduced group sparsity constraint and local smooth sparsity constraint based on standard sparse representation classification algorithm.Experiments with CASIA Dataset B showed that the method outperformed several other gait recognition methods.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第7期2536-2540,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(51365017)
关键词 步态识别 步态光流图 HS算法 组稀疏约束 局部平滑稀疏约束 gait recognition gait optical flow image HS algorithm group sparsity constraint representation local smooth sparsity constraint
  • 相关文献

参考文献11

  • 1Martinez D J, Kasl S V, Gill T M, et al. Longitudinal associa- tion between self-rated health and timed gait among older per- sons [J]. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 2010, 65 (6): 715-719.
  • 2江洁,陈峰,张广军.多区域特征融合的步态识别[J].计算机工程与应用,2011,47(7):159-161. 被引量:6
  • 3Zhang E, Zhao Y, Xiong W. Active energy image plus 2DLPP for gait recognition [ J ]. Signal Processing, 2010, 90 ( 7 ) 2295-2302.
  • 4John Wright, Allen Yang, Arvind Ganesh, et ak Robust face recog- nition via sparse representation [J3. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2009, 31 (2): 210-227.
  • 5Kim $, Xing E P. Tree-guided group lasso for multi-task re- gression with struetured sparsity [C] //Proeeedings of the 27th International Conferenee on Machine Learning, 2010: 543-550.
  • 6WANG Jinjun, YANG Jianchao, YU Kai, et al. Locality-con- strained linear coding for image classification [C] //Proc of Computer Vision and Pattern Recognition, 2010: 3360-3367.
  • 7LAN H W, CHEUNG K H, LIU N K. Gait flow image.- A sil- houette based gait representation for human identification [J]. Pattern Recognition, 2011, 44 (4): 973-987.
  • 8Meinhardt-Llopis E, P6rez J S, Kondermann D. Horn-schunck optical flow with a multi-scale strategy [J]. Image Processing on Line, 2013: 151-172.
  • 9CHAO Yuwei, YE Yiren, CHEN Yuwen, et al. Locality con- strained group sparse representation for robust face recognition [C] //Proc of International Conference on Image Proce-ssing, 2011: 761-764.
  • 10XU Dong, HUANG Yi, ZENG Zinan, et al. Human gait re- cognition using patch distribution feature and locality-con- strained group sparse representation [J]. Image Processing, 2012, 21 (1) : 316-326.

二级参考文献11

  • 1Murray M P, Drought A B, Kory R C.Walking patterns of normal men[J].Bone and Joint Surgery, 1964,462A(2):335-360.
  • 2Murray M RGait as a total pattern of movement[J].American Journal of Physical Medicine, 1967,46( 1 ) : 290-332.
  • 3Cunado D, Nixon M, Carter J.Using gait as a biometric, via phase-weighted magnitude spectra[C]//Proceedings of Intemation-al Conference on Audio- and Video-based Biometrics Person Authentication, Crans-Montana, Switzerland, 1997: 95 - 102.
  • 4Bobick A F, Johnson A Y.Gait recognition using static, activity-specific parameters[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, December 2001: 423-430.
  • 5Hayfron-Acquah J B,Nixon M S, Carter J N.Automatic gait rec- ognition by symmetry analysis[C]//Procceedings of the 2rid International Conference on Audio and Video Based Person Authentication, 200 1 : 327-340.
  • 6Little J J, Boyd J E.Reeognizing people by their gait: The shape of motion[J].Videre, 1998,1 (2) : 2-32.
  • 7Cepstral S F.Analysis technique for automatic speaker verification[J].IEEE Trans Acoustic Speak, Signal, Processing, 1981,29 (2) : 254-272.
  • 8Phillips J,Moon H,Rizvi S,et al.The FERET evaluation methodology for face recognition algorithms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (10) : 1090-1104.
  • 9Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 10Sonka M,Hlavac V,Boyle R.et al.图像处理、分析与机器视觉[M].2版.北京:人民邮电出版社,2003.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部