期刊文献+

焙烧温度对Pt/Al_2O_3催化剂催化纤维素转化性能的影响 被引量:2

Effect of calcination temperature on catalytic conversion of cellulose over Pt/Al_2O_3 catalyst
下载PDF
导出
摘要 以溶剂挥发诱导自组装方法合成的有序介孔氧化铝(MA)为载体负载铂,制备了Pt/MA催化剂。考察了载体和催化剂焙烧温度对Pt/MA催化剂催化纤维素转化性能的影响。采用X射线衍射、N2物理吸附、透射电镜和NH3程序升温脱附等手段对载体和催化剂进行了表征,随着载体焙烧温度的升高,氧化铝的有序度、晶相、比表面积、酸量、铂粒径大小均有明显变化。催化结果表明,载体焙烧温度和催化剂焙烧温度对催化剂的催化性能有显著影响。以800℃焙烧的氧化铝为载体负载铂,再经400℃焙烧制得的催化剂活性最高,六元醇的选择性达到了78.5%。 Mesoporous Pt/MA catalysts were prepared using the ordered mesoporousγ-Al2 O3 (MA)obtained via one-pot evaporation-induced self-assembly method as a carrier-supported platinum.The effects of calcination temperature of the supports and the catalysts on the catalytic performance for conversion of cellulose were investigated.The properties of the supports and the cata-lysts were characterized by the means of X-ray diffraction (XRD),N2 physisorption (BET),transmission electron microscopy (TEM)and temperature-programmed desorption of NH3 (NH3-TPD).As the calcination temperature increases,the crystal structure,the specific surface area,the size of platinum particles and the amount of the acid sites change obviously.The catalytic reaction results reveal that the catalytic properties are affected significantly by the calcination temperature of support and catalyst. The Pt/γ-Al2 O3 catalyst calcinated at the temperature of 400 ℃ with theγ-Al2 O3 support calcinated at 800 ℃ shows the best catalytic activity,which makes the selectivity of hexitol up to 78.5%.
出处 《中国科技论文》 CAS 北大核心 2014年第6期623-627,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20100032110018)
关键词 纤维素 催化转化 介孔氧化铝 焙烧温度 cellulose catalytic conversion mesoporous γ-Al2O3 calcination temperature
  • 相关文献

参考文献19

  • 1DENG TianYin,SUN JiYing & LIU HaiChao Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Stable and Unstable Species,Green Chemistry Center,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,China.Cellulose conversion to polyols on supported Ru catalysts in aqueous basic solution[J].Science China Chemistry,2010,53(7):1476-1480. 被引量:8
  • 2Rinaldi R, Schuth F. Design of solid catalysts for the conversion of biomass [J]. Energy & Environmental Science, 2009, 2(6): 610-626.
  • 3Binder J B, Raines R T. Simple chemical transforma- tion of lignocellulosic biomass into furans for fuels and chemicals [J]. Journal of The American Chemical Soci- ety, 2009, 131(5): 1979-1985.
  • 4Yu G, Yano S, Inoue H, et al. Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis [J]. Applied Biochemistry and Biotechnolo- gy, 2010, 160(2): 539-551.
  • 5Yu Y, Wu H W. Significant differences in the hydroly- sis behavior of amorphous and crystalline portions with- in microcrystalline cellulose in hot-compressed water [J]. Industrial & Engineering Chemistry Research, 2010, 49 (8): 3902-3909.
  • 6Jolle V, Chambon F, Rataboul F, et al. Non catalyzed and Pt/γ-Al2O3 catalyzed hydrothermal cellulose disso- lution conversion influence of the reaction parameters and analysis of the unreacted cellulose [J ]. Green Chemistry, 2009, 11(12): 2052-2060.
  • 7Chambon F, Rataboul F, Pinel C, et al. Cellulose hy- drothermal conversion promoted by heterogeneous Br? nsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid [J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 171-181.
  • 8Palkovits R, Tajvidi K, Procelewska J, et al. Hydro- genolysis of cellulose combining mineralacids and hydro- genation catalysts [J]. Green Chemistry, 2010, 12 (6) : 972-978.
  • 9Geboers J, van de Vyver S, Carpentier K, et al. Effi- cient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon [J]. Chemical Communications, 2010, 46(20): 3577-3579.
  • 10Geboers J, van de Vyver S, Carpentier K, et al. Hy- drolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C [J]. Green Chemistry, 2011, 13(8): 2167-2174.

二级参考文献39

  • 1沈宜泓,王帅,罗琛,刘海超.生物质利用新途径:多元醇催化合成可再生燃料和化学品[J].化学进展,2007,19(2):431-436. 被引量:21
  • 2Ji N,Zhang T,Zheng M Y,Wang A Q,Wang H,Wang X D,Chen J G.Angew Chem,Int Ed,2008,47:8510.
  • 3Ji N,Zhang T,Zheng M Y,Wang A Q,Wang H,Wang X D,Shu Y Y,Stottlemyer A L,Chen J G G.Catal Today,2009,147:77.
  • 4Zhang Y H,Wang AQ,Zhang T.Chem Commun,2010,46:862.
  • 5Zheng M Y,Wang A Q,Ji N,Pang J F,Wang X D,Zhang T.ChemSusChem,2010,3:63.
  • 6Ding L N,Wang A Q,Zheng M Y,Zhang T.ChemSusChem,2010,3:818.
  • 7Shu Y,Oyama S T.Carbon,2005,43:1517.
  • 8Clark P,Wang X,Oyama S T.J Catal,2002,207:256.
  • 9Li L,Wang X,Shen J,Zhou L,Zhang T.J Therm Anal Calorim,2005,82:103.
  • 10Lynd L R,Cushman J H,Nichols R J,Wyman C E.Science,1991,251:1318.

共引文献25

同被引文献17

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部