期刊文献+

铝用石墨阴极孔隙结构与石墨化程度关系研究 被引量:2

Study on the relationship between pore structure and graphitization degree of graphitic cathode for aluminum reduction
下载PDF
导出
摘要 铝用石墨阴极孔隙结构的常规研究方法难以对不同石墨化程度材料进行快速量化和智能化分析。根据体视学原理在二维空间定义孔隙结构参数,采用图像分析技术对不同类型石墨阴极孔隙结构的孔隙率、孔径、形状因子、孔隙取向及连通率等进行分析表征。结果表明,所用图像分析方法可定量分析石墨阴极材料的孔隙结构特征,并显示其与材料石墨化程度的规律性关系,所获数据有助于评价阴极材料性能和优化阴极制备过程参数。 It is difficult to perform a fast quantitative analysis to a large amount of cathode samples with varying degree in graphitization by the conventional methods used in the pore structures of graphitic cathode materials for aluminum reduction.On the basis of stereoscopy,the two-dimensional parameters were defined for the pore structure characterization.Image analysis method has been applied to analysis the porous structures with different graphitization degree.The pore structure parameters (porosity,pore diameter,aspect ratio,specific surface area,orientation and connectivity)were statistically calculated.The results demonstrate that the image analysis method can be used for characterizing porous structures of graphitic cathode quantitatively,which can reflect the relationship between the pore structure and the graphitization degree.The information obtained will help evaluate the performance of cathode materials and optimize the preparation process parameters of cathodes.
出处 《中国科技论文》 CAS 北大核心 2014年第6期659-662,668,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20110006110003)
关键词 人造石墨 孔隙结构 图像分析 石墨化 孔径分布 artificial graphite porous structure image analysis graphitization pore size distribution
  • 相关文献

参考文献20

  • 1Chauke L, Garbers-Craig A M. Reactivity between car- bon cathode materials and electrolyte based on industrial and laboratory data [J]. Carbon, 2013, 58: 40-45.
  • 2Hiltmann F, Patel P, Hyland M. Influence of internal cathode structure on behavior during electrolysis part I: Properties of graphitic and graphitized material [C]// Kvande H. Light Metals 2005. Warrendale, PA: Min-erals, Metals and Materials Society, 2005: 751-756.
  • 3Khramenko S A, Polyakov P V, Rozin A V. Effect of porosity structure on penetration and performance of lining materials [C]// Kvande H. Light Metals 2005. Warrendale, PA: Minerals, Metals and Materials Soci- ety, 2005: 795-799.
  • 4冯乃祥.冰晶石熔体和金属Na在铝电解阴极碳块中的共同渗透[J].金属学报,1999,35(6):611-617. 被引量:25
  • 5Brisson P Y, Darmstad H, Fafard M, et al. X-ray pho- toelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells [J]. Carbon, 2006, 44(8): 1438-1447.
  • 6Brassard M, Lebeuf M, Blais A, et al. Characterization of carbon cathode materials by x-ray microtomography [C]// Suarez C E. Light Metals 2012. Warrendale, PA: Minerals, Metals and Materials Society, 2012: 1325-1329.
  • 7El-Raghy SM, Williamson J, Samy T M, et al. Porosi- ty modifications in the carbon cathode of aluminum re- duction cell [C]//Anjier J L. Light Metals 2001. War- rendale, PA: Minerals, Metals and Materials Society, 2001: 723-729.
  • 8El-Raghy S M, Ahmed F M, Ibrahiem M O. Porosity modifications in the carbon cathode of aluminum reduc- tion cell II[C]// Schneider W. Light Metals 2002. Warrendale, PA.- Minerals, Metals and Materials Soci- ety, 2002: 63-69.
  • 9苗得雨,马富丽,王敏,白晓红.基于Matlab对强夯法处理黄土湿陷性的微观结构研究[J].中国科技论文,2013,8(5):385-390. 被引量:7
  • 10赵芳,李栋,陈振乾.超声波作用下污泥内水分渗透率及有效扩散系数的分形研究[J].中国科技论文,2013,8(8):816-819. 被引量:3

二级参考文献28

共引文献32

同被引文献18

  • 1Xu H F, Fan L J, Zhang Y, et al. Baked anode quality improvement through optimization of green anode pro- cessing [J]. Light Metals, 2012: 1169-1172.
  • 2Zarouni A, Zarouni A, Ahli N, et al. DXq-, an opti- mized version of DX technology [J]. Light Metals, 2012: 697-702.
  • 3Kuang Z, Thonstad J, Sorlie M. Effects of additives on the electrolytic consumption of carbon anodes in alumin- ium electrolysis [ J ]. Carbon, 1995, 33(10): 1479-1484.
  • 4Kuang Z, Thonstad J, Rolseth S, et al. Effect of bak- ing temperature and anode carrent density on anode car- bon consumption [J ]. Metallurgical and Materials Transactions B, 1996, 27(2): 177-183.
  • 5Sulaiman D, Garg R. Use of under calcined coke to pro- duce baked anode for aluminium reduction lines [J]. Light Metals, 2012:1147-1151.
  • 6Zoric J, Rousar I, Thonstad J. Mathematical modelling of industrial aluminium cells with prebaked anodes part I: current distribution and anode shape [J]. Journal of Applied Electrochemistry, 1997, 27(8).- 916-927.
  • 7Cutshall E R, Bullough V L. Influence of baking tem- perature and anode effects upon carbon sloughing [J]. Essential Readings in Light Metals: Electrode Technol- ogy for Aluminum Production, 1985, 4: 450-468.
  • 8Xue J L, Feng L X, Kouma Ndong G. High-tempera- ture oxidation and corrosion behaviors of Ni-Fe-Cr alloy for inert anode materials in aluminum electrolysis [C]// Jang T. 4th International Symposium on High-Temper- ature Metallurgical Processing. San Antonio, TMS, 2013: 177-184.
  • 9Joos J, Carraro T, Weber A, et al. Reconstruction of porous electrodes by FIB/SEM for detailed microstruc- ture modeling [J]. Journal of Power Sources, 2011, 196(17) : 7302-7307.
  • 10Cassayre L, Utigard T A, Bouvet S. Visualizing gas e- volution on graphite and oxygen-evolving anodes [J]. Journal of Minerals, Metals and Materials Society, 2002, 54(5) 41-45.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部