期刊文献+

玉米秸秆瞬间蒸汽爆破预处理的回归优化和结构分析 被引量:2

Regression optimization and structural analysis on instaneous steam explosion pretreatment of corn stalk
下载PDF
导出
摘要 采用响应面法回归分析优化瞬间蒸汽爆破预处理玉米秸秆过程,研究了汽爆压强、维压时间以及填料量三因素对酶解糖产率的影响,基于Box-Behnken设计,分析并获得了一个二阶线性方程模型,能够较好地拟合实验值。获取的最优条件为汽爆压强3.5MPa,维压时间50s,填料量60g,此时糖产率达到54.37%,相比于未处理物料,其糖化率提高了1.88倍。采用扫描电镜、X射线衍射分析以及傅里叶红外光谱对处理前后的物料进行结构和组分分析,与未处理的物料相比,处理后的物料结晶度明显降低,颗粒度减小,可及度显著提高。 This study aimed to perform a response surface methodology (RSM)regression analysis which led to the optimization on the operation condition of instaneous steam explosion pretreatment on corn stalk.The effects of pressure,time and filling quantity on total sugar yield obtained from enzymatic hydrolysis of pretreated corn stalk were investigated.Based on Box-Behnken design,a second order polynomial equation mode was obtained which can fit well the experment values.The optimized conditions for instaneous steam explosion pretreatment were 3.5 MPa for pressure,50 s for time and 60 g for filling quantity with a sugar yield of 54.37%.Compared with the untreated materials,the saccharification rate increased 1.88 times.Compared with the untreated corn stalk,the pretreated corn stalk was found to be porous,less crystalline and favorable to enzymatic hydrolysis based on the structural and component analyses on the treated and untreated materials by scanning electron microscopy (SEM),X-ray diffraction (XRD)and Fourier transform infrared spectroscopy (FTIR).
出处 《中国科技论文》 CAS 北大核心 2014年第6期686-690,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20130041120028) 中国博士后科学基金特别资助项目(2013T60286) 中央高校基本科研业务费专项基金资助项目(DUT11RC(3)76) 国家国际科技合作专项子课题(2013DFA60470-1)
关键词 预处理 玉米秸秆 瞬间蒸汽爆破 回归优化 结构分析 pretreatment corn stalk instaneous steam explosion regression optimization structural analysis
  • 相关文献

参考文献19

  • 1李志业,夏帆,张琳叶,范超云,蔡舒雅,魏光涛.麻疯树油化学法制备生物柴油的研究进展[J].中国科技论文,2013,8(3):219-224. 被引量:12
  • 2刘黎阳,牛坤,刘晨光,白凤武.离子液体预处理油料作物木质纤维素[J].化工学报,2013,64(S1):104-110. 被引量:12
  • 3Rubin E M. Genomics of cellulosic biofuels [J]. Na- ture, 2008, 454(7206): 841-845.
  • 4Tuck C O, Perez E, Horvdth I T, et al. Valorization of biomass: Deriving more value from waste [J]. Science, 2012, 337(6095) : 695-699.
  • 5Hendriks A T W M, Zeeman G, Pretreatments to en- hance the digestibility of lignocellulosic biomass [J]. Bioresource Technology, 2009, 100(1): 10-18.
  • 6Galbe M, Zacchi G. Pretreatment: The key to efficient utilization of lignocellulosic materials [J].Biomass and Bioenergy, 2012, 46: 70-78.
  • 7Yu Z, Zhang B, Yu F, et al. A real explosion: The re- quirement of steam explosion pretreatment [J]. Biore- souree Teehnology, 2012, 121: 335-341.
  • 8Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pre- treatment technologies for an efficient bioethanol pro- duction process based on enzymatic hydrolysis: A re- view[J]. Bioresource Technology, 2010, 101 (13) 4851-4861.
  • 9Hsu T C, Guo G L, Chen W H, et al. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis [J].Bioresource Technology, 2010, 101(13):4907-4913.
  • 10Sluiter A, Hames B, Ruiz R et al. Determination of structural carbohydrates and lignin in biomass [R]. Golden, Colorado: National Renewable Energy Labora- tory, TP-510-42618, 2011.

二级参考文献80

  • 1Thomas KC, Hynes SH, Ingledew WM. Practical and theoretical considerations in the production of high concentrations of alcohol by fermentation. Process Biochem, 1996, 31(4): 321-331.
  • 2Bai FW, Anderson WA, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv, 2008, 26(1): 89-105.
  • 3Devantier R, Pedersen S, Olsson L. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain. Appl Microbiol Biotechnol, 2005, 68(5): 622-629.
  • 4Alfenore S, Cameleyre X, Benbadis L, et al. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol, 2004, 63(5): 537-542.
  • 5O'Brien DJ, Craig Jr JC. Ethanol production in a continuous fermentation/membrane pervaporation system. Appl Microbiol Biotechnol, 1996, 44(6): 699-704.
  • 6Bisson, LF. Stuck and sluggish fermentations. Am J Enol Vitic, 1999, 50(1): 107-119.
  • 7Thomas KC, Ingledew WM. Fuel alcohol production: effects of free amino nitrogen on fermentation of very-high-gravity wheat mash. Appl Environ Microbiol, 1990, 56(7): 2046-2050.
  • 8Reddy LVA, Reddy OVS. Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: role of finger millet (Eleusine coracana L.) flour. Process Biochem, 2006, 41(3): 726-729.
  • 9Thomas KC, Hynes SH, Ingledew WM. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol, 1994, 60(5): 1519-1524.
  • 10Ge XM, Zhao XQ, Bai FW. Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnol Bioeng, 2005, 90(5): 523-531.

共引文献27

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部