期刊文献+

缓增分数Lévy过程(英文)

Tempered Fractional Lévy Processes
下载PDF
导出
摘要 基于文[5]提出的缓增分数布朗运和分数Lévy过程的概念,在本文中我们对分数Lévy过程的滑动平均积分表示中的核函数添加缓增指数项,从而定义缓增的分数Lévy过程并研究其样本轨道性质和分布性质.我们可以证明其具有平稳增量性和半长相依性质. Motivated by the notion of tempered fractional Brownian motion given by[5]and fractional Lévy processes,in this paper,adding a tempering exponential term to the power law kernel in the moving average representation of fractional Lévy processes,we define tempered fractional Lévy processes and investigate their sample and distribution properties.We show that they have stationary increments and semi-long range dependence.
出处 《应用数学》 CSCD 北大核心 2014年第3期564-569,共6页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China with granted(41101509,11301263) the Foundation from China's Ministry of Education(11YJA9100001)
关键词 分数Lévy过程 缓增分数Lévy过程 平稳增量性 半长相依性质 Fractional Lévy process Tempered fractional Lévy process Stationary increment Semi-long range dependence
  • 相关文献

参考文献6

  • 1Biagini F, HU Yaozheng, Oksendal B, ZHANG Tusheng. Stochastic Calculus for Fractional Brownian Motion and Applications[M]. London: Springer-Verlag, 2008.
  • 2HUANG Zhiyuan, Lu Xuebin, WAN Jianping. Fractional Levy processes and noises on Gel'f and triple[J]. Stoch. Dyn. , 2010,10 : 37-51.
  • 3Lu Xuebin, HUANG Zhiyuan,WAN Jianping. Fractional Levy processes on Gel'land triple and stochastic integration[J]. Front. Math. China, 2008,3 : 287-303.
  • 4Marquardt T. Fractional, Levy processes with an application to long memory moving average processes [J]. Bernoulli. ,2006,12:1099-1126.
  • 5Meerschaert M M, Sabzikar F. Tempered fractional Brownian motion[J]. Star. Prob. Letter, 2013,83: 2269-2275.
  • 6Samko S G, Kilbas A A, Marichev O I. Fractional Integrals and Derivatives: Theory and Applications [M]. London: Gordon and Breach, 1987.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部