期刊文献+

竞争-竞争-互惠交错扩散模型的整体解(英文)

On Global Existence of Solutions to the Competitor-competitor-mutualist Model with Cross-diffusion
下载PDF
导出
摘要 本文应用Sobolev嵌入定理和bootstrap技巧证明竞争-竞争-互惠交错扩散模型在空间维数小于10时古典解的整体存在唯一性. Using Sobolev embedding theorems and bootstrap arguments,the existence and uniqueness of nonnegative global existence of classical solutions for the competitor-competitor-mutualist model with cross-diffusion are proved when the space dimensions is less than 10.
作者 高海燕
出处 《应用数学》 CSCD 北大核心 2014年第3期623-629,共7页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11361055) the Fundamental Research Funds for the Gansu University
关键词 竞争-竞争-互惠 交错扩散 整体解 Competitor-competitor-mutualist Cross-diffusion Global solution
  • 相关文献

参考文献10

  • 1Shigesada N, Kawasaki K, Teramoto E. Spatial segregation of interacting species[J]. J. Theoret. Biol. , 1979,79(1) :83-99.
  • 2Barrett J W, Blowey J F. Finite element approximation of a nonlinear eross-diffusion population model [J]. Numer. Math. , 2004,98 (2) : 195-221.
  • 3Chen L,Jungel A. Analysis of a parabolic cross-diffusion population model without self-diffusion[J]. J. Differential Equations, 2004,224 (1) : 39-59.
  • 4Choi Y S, Lui R, Yamada Y. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion[J]. Discrete Contin. Dynam. Systems, 2004,10 (3) : 719-730.
  • 5Seong-A Shim. Uniform boundedness and convergence of solutions to cross-diffusion[J]. J. Diff. Eqs. , 2002,185 (1) : 281-305.
  • 6Seong-A Shim. Uniform boundedness and convergence of solution to the systems with a single nonzero cross-diffusion[J]. J. Math. Anal. , 2003,279 (1) : 1-21.
  • 7FU Shengmao,GAO Haiyan,CUI Shangbin. On global solutions for the competitor-eompetitor-mutualist model with cross-diffusion[J]. Aeta Mathematica Sinica : Chinese Series, 2008,51 ( 1 ) : 153-164.
  • 8Amann H. Dynamic theory of quasilinear parabolic equations Ⅲ. Global existence[J]. Math. Z. , 1989,202 (2) :219-250.
  • 9Tuoc P V. On. global existence of solutions to a cross-diffusion system[J]. J. Math. Anal. Appl. , 2008, 343(2) :826-834.
  • 10Ladyzenskaja O A,Solonnikov V A,Ural ceva N N. Linear and quasi-linear equations of parabolic type [G]//Transl. Math. Monogr. , Vol. 23. Providence: Amer. Math. Soc., 1968.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部