期刊文献+

伪压缩和单调映射迭代法的强收敛定理(英文)

A Strong Convergence Theorem of Iterative Process for Pseudocontractive and Monotone Mappings
下载PDF
导出
摘要 本文在Hilbert空间中研究有限个伪压缩映射,严格伪压缩映射和单调映射产生的变分不等式的迭代算法,获得伪压缩映射不动点集和变分不等式解的公共元素的强收敛定理,扩展了许多作者的相关研究. In this paper,we introduce an iterative scheme for finding a common element of fixed points of a finite family of pseudocontractive mappings,fixed points of strictly pseudocon-tractive mappings,solutions of variational inequality problem for monotone mappings.A strong convergence theorem is established in a Hilbert space under suitable conditions.The result extends the corresponding result of many others.
作者 张丽娟 佟慧
出处 《应用数学》 CSCD 北大核心 2014年第3期691-698,共8页 Mathematica Applicata
基金 Supported by the NSF of Hebei Province(A2012201054) the NSF of China(11201110) the NSFY of Hebei Province(Y2012021)
关键词 伪压缩映射 非扩张映射 单调映射 变分不等式 Pseudocontractive mapping Nonexpansive mapping Monotone mapping Variational inequality
  • 相关文献

参考文献12

  • 1Moudafi A. Viscosity approximation methods for fixed point problems[J]. J. Math. Anal. Appl. , 2000, 241 :46-55.
  • 2TIAN. Ming. A general iterative algorithms for nonexpansive mappings in Hilbert spaces[J]. Nonlinear Analysis, 2010,73 : 689-694.
  • 3Takahashi W, Toyoda M. Weak convergence theorems for nonexpansive mappings and monotone map- pings[J]. J. Optim. Theory Appl. , 2003,118 : 417-428.
  • 4C HEN J unmin, ZHANG Lijuan,FAN Tiegang. Viscosity approximation methods for nonexpansive map- pings and monotone mappings[J]. J. Math. Anal. Appl. ,2007,334:1450-1461.
  • 5Zegeye H, Shahzad N. Strong convergence of an iterative method for pseudoeontractive and monotone mappings[J]. J. Glob. Optim. , 2012,54 : 173-184.
  • 6XU Hongkun. An iterative approach to quadratic optimization[J]. J. Optim. Theory Appl. , 2003,116: 659-678.
  • 7Takahashi W,Zembayashi K. Strong and weak convergence theorems for equilibrium problems and rela- tively nonexpansive mappings in Banach spaces[J]. Nonlinear Anal. , 2009,70:45-57.
  • 8Zegeye H. An iterative approximation for a common fixed point of two pseudocontractive mappings[J]. ISRN Math. Anal. , 2011,14 doi: 10. 5402/2011/621901.
  • 9Goehel A, Kirk W A. Topics in metric fixed point theory[G]//Cambridge Studies in Advanced Mathe- matics, vol. 28. Cambrige : Cambridge University Press, 1990,473-504.
  • 10Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpan- sive semigroups without Bochner integrals[J]. J. Math. Anal. Appl. , 2005,305:227-239.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部