摘要
针对客户需求不一定能被所有配送中心满足的情况,建立起基于客户需求差异性的多配送中心车辆路径优化模型,制定了分类、分组、定线、调度四阶段的求解思路,在传统遗传算法基础上进行了算法设计。为了防止收敛于局部最优解,在遗传算子中增加了插入变异,提高了搜索的广度。与传统算法进行了分析比较,验证了该改进算法的有效性。
According to the situation that customer demands could not be met by all distribution centers,this paper proposed a multi-depot vehicle routing optimization model based on the difference of customer demands. In order to solve the model,it brought forward a four-stage method including classification,grouping,routing and scheduling and the improved algorithm based on genetic algorithm. To overcome converging to local optimization,the algorithm added insertion mutation in genetic operators,which enhanced the scope of the search. Finally,the improved algorithm compared with the traditional algorithm,the result verifies the effectiveness of the improved algorithm.
出处
《计算机应用研究》
CSCD
北大核心
2014年第8期2263-2265,2282,共4页
Application Research of Computers
基金
国家社科基金资助项目(13CGL127)
四川科技计划资助项目(2013ZR0041)
关键词
配送
多站点车辆路径问题
需求差异性
遗传算法
distribution
multi-depot vehicle routing problem(MDVRP)
difference of customer demands
genetic algorithm