期刊文献+

基于客户需求差异性的配送车辆路径优化研究 被引量:3

Research on delivery vehicle routing problem based on difference of customer demands
下载PDF
导出
摘要 针对客户需求不一定能被所有配送中心满足的情况,建立起基于客户需求差异性的多配送中心车辆路径优化模型,制定了分类、分组、定线、调度四阶段的求解思路,在传统遗传算法基础上进行了算法设计。为了防止收敛于局部最优解,在遗传算子中增加了插入变异,提高了搜索的广度。与传统算法进行了分析比较,验证了该改进算法的有效性。 According to the situation that customer demands could not be met by all distribution centers,this paper proposed a multi-depot vehicle routing optimization model based on the difference of customer demands. In order to solve the model,it brought forward a four-stage method including classification,grouping,routing and scheduling and the improved algorithm based on genetic algorithm. To overcome converging to local optimization,the algorithm added insertion mutation in genetic operators,which enhanced the scope of the search. Finally,the improved algorithm compared with the traditional algorithm,the result verifies the effectiveness of the improved algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2263-2265,2282,共4页 Application Research of Computers
基金 国家社科基金资助项目(13CGL127) 四川科技计划资助项目(2013ZR0041)
关键词 配送 多站点车辆路径问题 需求差异性 遗传算法 distribution multi-depot vehicle routing problem(MDVRP) difference of customer demands genetic algorithm
  • 相关文献

参考文献10

  • 1H0 W, HO G T S, JI Ping, et al. A hybrid genetic algorithm for the multi-depot vehicle routing problem [ J ]. Engineering Applications of Artificial Intelligence,2008,21 (4) :548-557.
  • 2YUCENUR G N, DEMIREL N C. A new geometric shape-based ge-netic clustering algorithm for the multi-depot vehicle routing problem [J]. Expert Systems with Applications, 2011,38 ( 9 ) : 11859- 11865.
  • 3SUREKHA P, Dr SUMATHI S. Solution to multi-depot vehicle rou- ting problem using genetic algorithms [ J]. World Applied Program- ruing,2011,1 (3) :118-131.
  • 4POLACEK M, HARTL R F, DOERNER K. A variable neighborhood search for the multi depot vehicle routing problem with time windows [J]. Journal of Heuristics,2004,10(6) :613-627.
  • 5CORDEAU J F, GENDREAU M, LAPORTE G. A Tabu search heu- ristic for periodic and multi-depot vehicle routing problems [ M ]. Hoboken : Wiley, 1997 : 105-119.
  • 6CREVIER B, CORDEAU J F, LAPORTE G. The multi-depot vehicle routing problem with inter-depot routes [ J ]. European Journal of Operational Research,2007,176 (2) :756- 773.
  • 7SOMBUNTHAM P, KACHITVICHAYANUKUL V. A particle swarm optimization algorithm for multi-depot vehicle routing problem with pickup and delivery requests [ C ]//Proc of International MultiConfer- ence of Engineers and Computer Scientists. 2010:1998-2003.
  • 8GULCZYNSKI D, GOLDEN B, WASIL E. The multi-depot split de- livery vehicle muting problem : an integer programming-based heuris- tic, new test problems, and computational results[ J]. Computers & Industrial Engineering,2011,61 (3) :794-804.
  • 9LIU Ran, JIANG Zhi-bin, FUNG R Y K, et al. Two-phase heuristic algorithms for full truckloads multi-depot capacitated vehicle routing problem in carrier collaboration [ J ]. Computers & Operations Fie- search,2010,37(5) :950-959.
  • 10李光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.

同被引文献24

  • 1刘芳,王玲.基于动态规划思想求解关键路径的算法[J].计算机应用,2006,26(6):1440-1442. 被引量:20
  • 2Hoang D C,Kumar R,Panda S K.Optimal data aggregation tree in wireless sensor networks based on intelligent water drops algorithm[J].IET Wireless Sensor Systems,2012,2(3):282-292.
  • 3Dariane A B,Sarani S.Application of intelligent water drops algorithm in reservoir operation[J].Water Resources Manage,2013,27(2):4827-4843.
  • 4Zhang Y Z,Wang H M,Wang S.A deformable surface model for real-time water drop animation[J].IEEE Transactions on Visualization and Computer Graphics,2012,18(8):1281-1289.
  • 5Li Z P,Zhao F,Liu H W.Intelligent water drops algorithm for vehicle routing problem with time windows[C]//International Conference on Service Systems and Service Management(ICSSSM),Beijing,2014:1-6.
  • 6Kamkar I,Akbarzadeh T M,Yaghoobi M.Intelligent water drops a new optimization algorithm for solving the vehicle routing problem[C]//IEEE International Conference on Systems Man and Cybernetics(SMC),Istanbul,2010:4142-4146.
  • 7Zahra B,Teymourian E,Komaki G M.An improved optimization method based on the intelligent water drops algorithm for the vehicle routing problem[C]//IEEE Symposium on Computational Intelligence in Production and Logistics Systems(CIPLS),Orlando,FL,USA,2014:59-66.
  • 8Salmanpour S,Omranpour H,Motameni H.An intelligent water drops algorithm for solving robot path planning problem[C]//IEEE 14th International Symposium on Computational Intelligence and Informatics(CINTI),Budapest,2013:333-338.
  • 9Sur C,Sharma S,Shukla A.Multi-objective adaptive intelligent water drops algorithm for optimization&vehicle guidance in road graph network[C]//International Conference on Informatics,Electronics&Vision(ICIEV),Dhaka,2013:1-6.
  • 10Straub J,Eunjin K.Characterization of extended and Simplified Intelligent Water Drop(SIWD)approaches and their comparison to the Intelligent Water Drop(IWD)approach[C]//2013 IEEE 25th International Conference on Tools with Artificial Intelligence(ICTAI),Herndon,VA,2013:101-107.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部