摘要
针对基本蝙蝠算法求解精度低、易陷入局部最优的缺点,提出一种改进的蝙蝠算法用于求解约束优化问题。该算法利用佳点集方法构造初始种群以维持群体的多样性,引入惯性权重以协调算法的勘探和开发能力。为了避免算法陷入局部最优,对当前全局最优解进行多样性变异操作。通过对四个标准测试函数和化工应用的仿真实验并与其他算法进行比较,结果表明了该算法具有较强的全局搜索能力。
Bat algorithm( BA) has a few disadvantages in the global searching,including low solving precision and high possibility of being trapped in local optimum. This paper proposed a modified bat algorithm for solving constrained optimization problems. It used good-point set method to initiate individual position and velocity,which strengthened the diversity of global searching. It introduced the inertia weight to coordinate the algorithm's ability of exploration and exploitation. The proposed modified algorithm was tested on four standard benchmark functions and one chemical engineering optimization problem. Experimental results indicate that the proposed algorithm is able to find better solutions comparable to the chosen methods.
出处
《计算机应用研究》
CSCD
北大核心
2014年第8期2350-2353,共4页
Application Research of Computers
基金
贵州省科学技术基金资助项目(黔科合J字[2013]2082号
黔科合J字[2009]2061号)
贵州省高校优秀科技创新人才支持计划资助项目(黔教合KY字[2013]140)
省教育厅自然科学研究项目(2008040)
关键词
蝙蝠算法
约束优化问题
多样性变异
佳点集方法
bat algorithm
constrained optimization problem
diversity mutation
good-point set method