期刊文献+

求解约束优化问题的改进蝙蝠算法 被引量:12

Modified bat algorithm for solving constrained optimization problems
下载PDF
导出
摘要 针对基本蝙蝠算法求解精度低、易陷入局部最优的缺点,提出一种改进的蝙蝠算法用于求解约束优化问题。该算法利用佳点集方法构造初始种群以维持群体的多样性,引入惯性权重以协调算法的勘探和开发能力。为了避免算法陷入局部最优,对当前全局最优解进行多样性变异操作。通过对四个标准测试函数和化工应用的仿真实验并与其他算法进行比较,结果表明了该算法具有较强的全局搜索能力。 Bat algorithm( BA) has a few disadvantages in the global searching,including low solving precision and high possibility of being trapped in local optimum. This paper proposed a modified bat algorithm for solving constrained optimization problems. It used good-point set method to initiate individual position and velocity,which strengthened the diversity of global searching. It introduced the inertia weight to coordinate the algorithm's ability of exploration and exploitation. The proposed modified algorithm was tested on four standard benchmark functions and one chemical engineering optimization problem. Experimental results indicate that the proposed algorithm is able to find better solutions comparable to the chosen methods.
作者 龙文 张文专
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2350-2353,共4页 Application Research of Computers
基金 贵州省科学技术基金资助项目(黔科合J字[2013]2082号 黔科合J字[2009]2061号) 贵州省高校优秀科技创新人才支持计划资助项目(黔教合KY字[2013]140) 省教育厅自然科学研究项目(2008040)
关键词 蝙蝠算法 约束优化问题 多样性变异 佳点集方法 bat algorithm constrained optimization problem diversity mutation good-point set method
  • 相关文献

参考文献13

  • 1LONG Wen, LIANG Xi-ming, HUANG Ya-fei, et al. A hybrid dif- ferential evolution augmented Lagrangian method for constrained nu- merical and engineering optimization[ J]. Computer-Aided Design, 2013,45(12) :1562-1574.
  • 2MOHAMED A W, SABRY H Z. Constrained optimization based on modified differential evolution algorithm [J].Information Science, 2012,194( 1 ) :171-208.
  • 3KHEAWHOM S. Efficient constraint handling scheme for differential evolution algorithm in solving chemical engineering optimization prob- lem[J]. Journal of Industrial and Engineering Chemistry,2013, 16(4) :620-628.
  • 4WANG Yong, CAI Zi-xing. Combining muhiobjective optimization with differential evolution to solve constrained optimization problems [J]. IEEE Trans on Evolutionary Computation, 2012,16 ( 1 ) : 11?-134.
  • 5COSTA L, SANTO I, FERNANDES E. A hybrid genetic pattern search augmented Lagrangian method for constrained global optimiza- tion [ J ]. Applied Mathematics and Computation ,2012,218 ( 18 ) : 9415-9426.
  • 6DANESHYARI M, YEN G G. Constrained multiple-swarm particle swarm optimization within a cultural framework [ J]. IEEE Trans on Systems, Man, and Cybernetics,2012,42(2):475-490.
  • 7YANG Xing-she. Nature inspired meta-heuristic algorithms [ M ]. 2nd ed. Frome, UK : Luniver Press ,2010:97-104.
  • 8HUAPT R, HAUPT S. Practical genetic algorithm[M]. [S. 1. ] :Wi- ley, 2004.
  • 9龙文,梁昔明,徐松金,陈富.聚类佳点集交叉的约束优化混合进化算法[J].计算机研究与发展,2012,49(8):1753-1761. 被引量:18
  • 10杜继永,张凤鸣,李建文,杨骥.一种具有初始化功能的自适应惯性权重粒子群算法[J].信息与控制,2012,41(2):165-169. 被引量:21

二级参考文献27

  • 1董红斌,黄厚宽,何军,侯薇.一种求解约束优化问题的演化规划算法[J].计算机研究与发展,2006,43(5):841-850. 被引量:7
  • 2Kennedy J, Eberhart R C. Particle swarm optimization[C]//Pro- ceedings of IEEE International Conference on Neural Net- works. Piscataway, NJ, USA: IEEE, 1995: 1942-1948.
  • 3Shi Y, Eberhart R C. A modified particle swarm optimizer[C]// Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 1998: 69-73.
  • 4Eberhart R C, Shi Y. Comparing inertia weights and constric- tion factors in particle swarm optimization[C]//Proceedings of the 2000 Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 2000: 84-88.
  • 5Chatterjee A, Siarry P. Nonlinear inertia weight variation for dy- namic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.
  • 6Chen G M, Huang X B, Jia J Y, et al. Natural exponential inertia weight strategy in particle swarm optimization[C]//Proceedings of the Six World Congress on Intelligent Control and Automa- tion. Piscataway, NJ, USA: IEEE, 2006: 3672-3675.
  • 7Xu Y J, Dong X M, Liao K J. Partially random learning particle swarm optimization with parameter adaptation[C]//Proceedings of the 6th World Congress on Control and Automation. Piscat- away, NJ, USA: IEEE, 2006: 3519-3523.
  • 8Nedjah N, Mourelle L M. Swarm intelligent systems[M]. Berlin, Germany: Springer-Verlag, 2006.
  • 9Runarsson T P, Yao X. Stochastic ranking for constrained evolutionary optimization [-J. IEEE Trans on Evolutionary Computation, 2000, 4(3): 284-294.
  • 10Deb K. An efficient constraint handling method for genetic algorithm EJ]. Computation Methods in Applied Mechanics and Engineering, 2000, 186(2/3/4) : 311-338.

共引文献37

同被引文献95

引证文献12

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部