期刊文献+

基于评分可信度的协同过滤融合方法 被引量:1

Collaborative filtering fusion method based on rate credibility
下载PDF
导出
摘要 为了解决基于项目和基于用户的推荐结果的融合问题,提出了基于评分可信度的协同过滤融合方法。该方法在推荐对象集合中计算评分数大于平均评分数的对象作为信任子群,在信任子群上计算能够使推荐的平均绝对误差最小的融合参数λ。由计算得到的最优融合参数λ对基于项目和基于用户的推荐结果进行融合,作出推荐。实验结果表明,该算法有效提高了过滤推荐的精准度和可靠性,具有良好的推荐效果。 To overcome several limitations in the research of collaborative filtering( CF) fusion,this paper presented a CF recommendation fusion algorithm based on rate credibility. This method calculated trustworthy subset which rated times above the average rated times from both user-based and item-based recommendation set,calculated optimal λ on trustworthy subset repeatedly. The method used optimal λ to fuse user-based and item-based recommendation set. Experimental results show that this algorithm can effectively achieve higher recommendation accuracy and reliability and better recommendation results.
作者 王光 邱云飞
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2387-2389,2393,共4页 Application Research of Computers
基金 辽宁省创新团队项目(2009T045) 辽宁省教育厅基金资助项目(L2010168)
关键词 协同过滤 推荐系统 评分可信度 平均绝对误差 融合算法 collaborative filtering recommendation system rate credibility mean absolute error fusion algorithm
  • 相关文献

参考文献17

  • 1WANG Qian, ZHANG Xiao-bin, SUN Min, et al. Credibility-based col- laborative filtering recommendation algorithm [ J ]. Journal of Infor- mation and Computational Science ,2010,7 ( 1 ) :259- 268.
  • 2许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:542
  • 3BOBADILA J, ORTEGA F, HERNANDO A, et al. Generalization of recommender systems: collaborative filtering extended to groups of us- ers and restrietecl to groups of items[ J]. Expert Systems with Appli- cations ,2012,39 ( 1 ) :172-186.
  • 4SHEN Lei, ZHOU Yi-ming. A new user similarity measure for colla- borative filtering algorithm[ C ]//Proc of the 2nd Intemational Confere- nce on Computer Modeling and Simulation. Washington DC: IEEE Computer Society ,2010 : 375-379.
  • 5贾冬艳,张付志.基于双重邻居选取策略的协同过滤推荐算法[J].计算机研究与发展,2013,50(5):1076-1084. 被引量:60
  • 6ABERNETHY J, BACH F,EVGENIOU T,et al. A new approach to col- laborative filtering: operator estimation with spectral regularization [ J ]. The Journal of Machine Learning Research,2009,10:803- 826.
  • 7王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. 被引量:179
  • 8LUO Heng,NIU Cang-yong,SHEN Rui-min,et al. A collaborative ill- tering frameword based on both local user similarity and global user similarity[ J ]. Machine Leaning,2008,72 ( 3 ) :231-245.
  • 9SHIH Y Y, LIU Duen-ren. Product recommendation approaches:col- laborative filtering via customer lifetime value and customer demands [ J ]. Expert System with Application ,2008,35 (1-2) :350-360.
  • 10HWANG C S, FONG R S. A hybrid recommender system based on collaborative filtering and cloud model [ J ]. World Academy of Science, Engineering and Technology ,2011,75:500- 505.

二级参考文献148

共引文献1019

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部