摘要
为了解决基于项目和基于用户的推荐结果的融合问题,提出了基于评分可信度的协同过滤融合方法。该方法在推荐对象集合中计算评分数大于平均评分数的对象作为信任子群,在信任子群上计算能够使推荐的平均绝对误差最小的融合参数λ。由计算得到的最优融合参数λ对基于项目和基于用户的推荐结果进行融合,作出推荐。实验结果表明,该算法有效提高了过滤推荐的精准度和可靠性,具有良好的推荐效果。
To overcome several limitations in the research of collaborative filtering( CF) fusion,this paper presented a CF recommendation fusion algorithm based on rate credibility. This method calculated trustworthy subset which rated times above the average rated times from both user-based and item-based recommendation set,calculated optimal λ on trustworthy subset repeatedly. The method used optimal λ to fuse user-based and item-based recommendation set. Experimental results show that this algorithm can effectively achieve higher recommendation accuracy and reliability and better recommendation results.
出处
《计算机应用研究》
CSCD
北大核心
2014年第8期2387-2389,2393,共4页
Application Research of Computers
基金
辽宁省创新团队项目(2009T045)
辽宁省教育厅基金资助项目(L2010168)
关键词
协同过滤
推荐系统
评分可信度
平均绝对误差
融合算法
collaborative filtering
recommendation system
rate credibility
mean absolute error
fusion algorithm