期刊文献+

基于低秩矩阵填充的MRI序列去噪

MRI sequence denoising based on low-rank matrix completion
下载PDF
导出
摘要 现有的核磁共振成像(MRI)图像序列去噪方法大都针对单一的噪声类型,在实际中面对复杂的噪声情况其去噪效果并不理想。为改善这一现状,提出了一种基于低秩矩阵填充的MRI图像序列的去噪方法。针对混合噪声,通过在空间域和时域搜索和分组近似块,将去噪问题转换为低秩矩阵填充问题,使其不需要限定噪声的统计特性。实验结果表明,针对混合噪声,该算法的鲁棒性与去噪性能对比其他算法有所提升。 Most existing magnetic resonance imaging( MRI) sequence denoising algorithms assume a single statistical model of image noise,which effect often is not ideal when facing complex noisy situation in practice. In order to improve this situation,this paper proposed a MRI sequence denoising method based on low-rank matrix. For mixed noise,by grouping similar patches in both spatial and temporal domain,it formulated the problem of removing mixed noise as a low-rank matrix completion problem,which leaded to a denoising scheme without assumptions on the statistical properties of noise. The experimental results show that in view of the mixed noise,the robustness and the denoising performance of the proposed denoising algorithm,have gain improve compared with other algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2535-2538,共4页 Application Research of Computers
基金 四川大学青年基金资助项目(2011SCU11061)
关键词 核磁共振成像序列 混合噪声 低秩矩阵 MRI sequence mixed noise low-rank matrix
  • 相关文献

参考文献17

  • 1HEALEY G,KONDEPUDY R. Radiometric CCD camera calibration and noise estimation [J]. IEEE Trans on Pattern Analysis and Machine intelligence, 1994,16(3) :267-276.
  • 2SUGANYA C, UMAMAHESWARI O. Image restoration using noise adaptive fuzzy switching weighted median filter for the removal of im- pulse noise[ C]//Proc of Defense Science Research Conference and Expo. [S. 1. ] :IEEE Press,2011:1-4.
  • 3AIZENBERG N N, AIZENBERG I N. CNN-like networks based on multi-valued and universal binary neurons : learning and application to image processing[ C]//Proc of the 3rd IEEE International Workshop on Cellular Neural Networks and Their Applications. [ S. 1. ] : IEEE Press, 1994 : 153-158.
  • 4WU G D, HUANG P H. Robust image watermarking using adaptive structure based wavelet tree quantization [ J ]. Journal of information Science and Engineering, 2010, 26 (3) : 1049-1071.
  • 5周柞峰,唐利孬,唐矗,等.一种快速去除图像中混合噪声的方法:中国,CN101860667B[P].2010-10.
  • 6罗笑南,唐青华,孟思明,等.一种混合噪声图像去噪方法:中国,CN102156963A[P].2011-8.
  • 7DABOY K, FOI A, EGIAZARIAN. Video denoising by sparse 3D transform-domain collaborative filtering [ C ]//Proc of the 15th Euro- pean Signal Processing Conference. 2007:7.
  • 8DABOY K,FOI A, KATKOVNIK V,et al. Image denoising by sparse 3D transform-domain collaborative filtering [ J ]. IEEE Trans on Image Processing, 2007,16 (8) :2080- 2095.
  • 9BUADES A, COLL B, MOREL J M. Image denoising by non-local averaging[ C ]//Proc of IEEE International Conference of Acoustics, Speech end Signal Processing. 2005: 25-28.
  • 10BUADES A, COLL B,MOREL J M. A review of image denoising al- gorithms, with a new one [ J]. Multiscale Modeling Simulation, 2005,4(2) :490-530.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部