期刊文献+

结合动作视觉概念的复杂查询图像重排序 被引量:1

Image reranking for complex query combined with verb visual concept
下载PDF
导出
摘要 从复杂查询中挖掘动作视觉概念,提出面向复杂查询时将动作视觉概念亦纳入考虑的图像检索结果重排序方法。首先从复杂查询中提取动词和名词短语作为视觉概念,然后分别从语义层、视觉层以及两者的交叉形态估计复杂查询与图像之间的相关性,最后根据相关分数完成检索结果的重排序。通过在Google图像搜索引擎上的实验结果证明,针对复杂查询的检索结果重排序,加入动作视觉概念能够更加具体地描述图像的视觉内容。 This paper proposed a reranking approach for complex queries which took the verb visual concepts into account.Giving a complex query,it first detected the noun-phrases and verb-phrases as visual concepts. Then it estimated the relevance scores from three layers,i. e.,the sematic-level,visual-level as well as cross-modality level. Based on the relevance scores,it could obtain a new ranking list. The experimental results in Google image search engine show that this approach can obtain good performance for complex queries on the description of image visual content.
出处 《计算机应用研究》 CSCD 北大核心 2014年第8期2551-2556,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61272393 61172164) 中央高校基本科研业务费专项资金资助项目(2013HGQC0018 2013HGBH0027 2013HGBZ0166)
关键词 图像检索 复杂查询 动作视觉概念 重排序 视觉内容 image retrieval complex query verb visual concept reranking visual content
  • 相关文献

参考文献23

  • 1NIE Li-qiang, WANG Meng,ZHA Zheng-jun,et al. Oracle in image search: a content-based approach to performance prediction [ J ]. AGM Trans on Information System, 2012,30 (2) :13.
  • 2KUMARAN G, ALLAN J. A case for shorter queries, and helping users create them [ C ]//Proc of the North Ameriean Chapter of the Association for Computational Linguistics:Human Language Teehnolo-gies. 2007:220-227.
  • 3LIU Yuan, ME1 Tao, HUA Xian-sheng, et al. Learning to video search rerank via pseudo preference feedback [ C ]//Proe of IEEE In- ternational Conference on Muhimedia and Expo. 2008:297-300.
  • 4TORRALBA A, FERGUS R, FREEMAN W. 80 million tiny images a large data set tor nonparametrie object and scene recognition [ J ] IEEE Trans on Pattern Analysis and Machine Intelligence 2008,30( 11 ) : 1958-1970.
  • 5Hitwise [ EB/OL ]. http ://weblogs. hitwise, corn/alan-long/2009/11 / searches_getting_longer, html.
  • 6NIE Li-qiang, WANG Meng, ZHA Zheng-jun, et al. Multimedia ans- wering: enriching text qa with media information[ C ]//Proc of the 34th International ACM SIGIR Conferenee on Research and Development in Information Retrieval. New York : ACM Press, 2011:695-704.
  • 7LI Ze-chao, WANG Meng, LIU Jing, et al. News eontextualization with geographic and visual information [ C ]//Proc of ACM Interna- tional Conference on Muhimedia. 2011 : 133-142.
  • 8NIE Li-qiang, YAN Shui-cheng, WANG Meng, et al. Harvesting vis- ual concepts ior image seareh with complex queries [ C ]//Proe of ACM International Conferenee on Muhimedia. 2012:59-68.
  • 9BENDERSKY M, METZLER D, CROFT W B. Learning concept im-portance using a weighted dependence model [ C ]//Proc of ACM In- ternational Conference on Web Search and Data Mining. 2010:31- 40.
  • 10BENDERSKY M, CROFT W B. Discovering key concepts in verbose queries[ C]//Proc of the 31st Annual International ACM SIGIR Con- ference on Research and Development in Information Retrieval. New York : ACM Press, 2008:491-498.

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部