期刊文献+

1 000 MW直接空冷发电机组凝汽器传热性能试验研究 被引量:10

Experimental Research on Heat Transfer Performance of Condenser Used in 1 000 MW Direct Air-cooled Generator Unit
下载PDF
导出
摘要 不同工况下空冷凝汽器的换热性能,是火电直接空冷机组设计、优化和运行的主要依据。针对实际运行的1 000 MW超超临界直接空冷机组,对其凝汽器进行了夏季、冬季和秋季工况的试验研究。试验获得了夏季和冬季工况下凝汽器翅片管束迎面风速的分布和壁面温度的分布,发现翅片管束迎面风速分布从上至下逐渐增高,而管束壁面温度分布对于顺流单元从上至下逐渐降低,对于逆流单元从上至下逐渐增高;获得了顺流翅片管束的易结冻区域;获得了秋季工况下1 000 MW空冷机组空冷凝汽器空气侧努赛尔数和雷诺数之间的无量纲关联式。 Heat transfer performance of the air-cooled condenser(ACC) under various operating conditions is the main basis for design, optimization and operation of a direct air-cooled power plant. Experimental studies on the heat transfer performance of the ACC in a 1 000 MW ultra supercritical direct air-cooled power plant were carried out under the summer, autumn and winter conditions. The head-wind velocity and the surface temperature distributions on the finned-tube bundles were measured. It was found that the head-wind velocities increase from the top to the bottom inside air-cooled cells, and the surface temperatures decrease from the top to the bottom on the finned-tube bundles in down-flow air-cooled cells, but contrary in up-flow cells;The areas easy to freeze of ACC were found;Based on the experimental datum, a dimensionless correlation between Nusselt number and Reynolds number for the air side of the 1 000 MW ACC under autumn condition was derived.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第20期3317-3323,共7页 Proceedings of the CSEE
基金 "十一五"国家科技支撑计划重大项目(2009BAA16B01)~~
关键词 1 000 MW超超临界机组 直接空冷电厂 空冷凝汽器 管壁温度分布 迎面风速分布 冻结 试验关联式 1 000 MW ultra supercritical unit direct air-cooled power plant air-cooled condenser(ACC) the distribution of finned-tube surface temperature the distribution of head wind velocity freeze experimental correlation
  • 相关文献

参考文献13

二级参考文献89

共引文献239

同被引文献124

  • 1杨立军,贾思宁,卜永东,杜小泽,杨勇平.电站间冷系统空冷散热器翅片管束流动传热性能的数值研究[J].中国电机工程学报,2012,32(32):50-57. 被引量:62
  • 2郭民臣,樊雪,付立,李美宝,彭新飞.环境温度对热电联产机组的影响及对策[J].热力发电,2013,42(5):11-14. 被引量:6
  • 3Nusselt W.Die oberflachenkondesation des wasserdamffes the surface condensation of water[J].Zetrschr Ver Deutch Ing,1916,60:541-546(未找到期刊名的全写).
  • 4Colburn A P,Hougen O A.Design of cooler condensers for mixtures of vapors with noncondensing gases[J].Industrial & Engineering Chemistry,1934,26(11):1178-1182.
  • 5Kageyama T,Peterson P F,Schrock V E.Diffusion layer modeling for condensation in vertical tubes with noncondensable gases[J].Nuclear Engineering and Design,1993,141(1-2):289-302.
  • 6Sun D L,Xu J L,Wang L.Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT[J].International Communications in Heat and Mass Transfer,2012,39(8):1101-1106.
  • 7Ambrosini W,Forgione N,Manfredini A,et al.On various forms of the heat and mass transfer analogy:Discussion and application to condensation experiments[J].Nuclear Engineering and Design,2006,236(9):1013-1027.
  • 8Oh S,Revankar S T.Analysis of the complete condensation in a vertical tube passive condenser[J].International Communications in Heat and Mass Transfer,2005,32(6):716-727.
  • 9Liao Y,Vierow K.A generalized diffusion layer model for condensation of vapor with noncondensable gases[J].Journal of Heat Transfer,2006,129(8):988-994.
  • 10Su J Q,Sun Z N,Zhang D Y.Numerical analysis of steam condensation over a vertical surface in presence of air[J].Annals of Nuclear Energy,2014,72:268-276.

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部