期刊文献+

基于概率事件的无线传感网络能耗分析研究 被引量:1

Research on Energy Consumption of Wireless Sensor Networks Based on Probability Event
下载PDF
导出
摘要 延长无线传感节点的存活时间,对于无线传感网络意义重大。应用马尔科夫链,分析了无线传感网络的能耗和数据传输的关系,并建立了无线传感节点的能耗模型。实验表明:当节点的密度较大或传输的分组较长时,网络中的传输效率会随之下降。根据节点的密度,动态调整分组的长度,可以降低能耗,提高网络的生命周期。 It is significant to prolong lifetime of sensor nodes in wireless sensor networks. Markov chain is used to analyze the relationship between energy consumption and data transmission of wireless sensor networks,and a model of energy consumption is established. Experiments show that the transmission efficiency of the network decreases when the density of the nodes is large or the packet is long. So,according to the density of nodes,energy consumption could be reduced and the network lifetime could be prolonged by dynamically adjusting packet length.
作者 徐阳
出处 《常州信息职业技术学院学报》 2014年第3期33-35,39,共4页 Journal of Changzhou College of Information Technology
基金 江苏省交通运输厅科学研究计划项目(2012Y24-2)
关键词 无线传感网络 能耗 马尔科夫链 wireless sensor networks energy consumption Markov chain
  • 相关文献

参考文献10

  • 1TH Lee, A Marshall, B Zhou. A Framework for Cross- layer Design of Energy-conserving On-Demand Routing in Multi-hop Wn'eless Networks [ C ]. IEE Mobility Con- ference 2005, Guangzhou, China, 2005.
  • 2Wijetunge S, Gunawardana U, Liyanapathirana R. Per- formance Analysis of IEEE 802.15,4 MAC Protocol for WSNS in Burst Error Channels[ C]. The llth Intema-tional Symposium on Communications & Information Technologies, Hangzhou, China, 2011.
  • 3P Di Marco, P Park, C Fischione, K Johamson. Analyti- cal modeling of multi-hop IEEE 802.15.4 networks [ J]. IEEE Transactions on Vehicular Technology, 2012 ( 7 ) : 3191-3208.
  • 4F Bouabdallah, N Bouabdallah, R Boutaba. On Balancing Energy Consumption in Wireless Sensor Networks [ J ]. IEEE Transactions on Vehicular Technology, 2009 ( 6 ) : 2909 -2924.
  • 5D Dessales, A Ponssard, R Vauzelle, N Richard, F Gaud- aire, C Martons. Physical layer study in a goal of ro- bustness and energy efficiency for wireless sensor net- works[ C ]. 2010.Conference on Design and Architec- tures for Signal and Image Processing, Edinburgh, UK, 2010.
  • 6J Vazifehdan, RV Pmsad, M Jacobsson, I Niemegeers. An Analytical Energy Consumption Model for Packet Transfer over Wireless Links[ J]. IEEE Communications Letters, 2012( 1 ): 30-33.
  • 7B Kan, L Cai, L Zhao, Y Xu. Energy Efficient Design of WSN BAsed on an Accurate Power Consumption Model [ C]. International Conference on Wireless Communica- tions, Networking and Mobile Computing, Shanghai, China, 2007.
  • 8Marta Kwiatkowska. PRISM manual [ EB/OL]. http:// www. m'ismmodelchecker. Or, 2013-12-26.
  • 9M.Fruth. Probabilistic Model Checking of Contention Res- olution ki the IEEE 802.15.4 Low-Rate Wkeless Personal Area Network Protocol [C ]. Second International Sym- posium on Leveraging Applicatkms of Formal Methods, Paphos, Cyprus, 2006.
  • 10Digi,XBee /XBee-PRO International Inc., 2009.

同被引文献15

  • 1孙钦东,张德运,高鹏.基于时间序列分析的分布式拒绝服务攻击检测[J].计算机学报,2005,28(5):767-773. 被引量:55
  • 2Li Weimin, Cao Xiaoguang, Liu Fang, et. al. Improving DNS cache to alleviate the impact of DNS DDoS attack [J]. Journal of Networks,2011,6 (2) :279-286.
  • 3Ye Xi, Ye Yiru. A Practical Mechanism to Counteract DNS Am-plification DEloS Attacks [J]. Journal of Computational Infor- mationSystems,2013,9 (1):265 - 272.
  • 4Subbulakshmi T,Shalinie S M, Ramamoorthi A. Detection and classification of DDoS attacks using machine learning algorithms [J]. European Journal of Scientific Research, 2010,47 (3) : 334- 346.
  • 5Farid D, Rahman S, Rahman C. Adaptive Intrusion Detection based on Boosting and Naive Bayesian Classifier[J]. Internation- al Journal of Computer Applications,2011,24(3) :12-19.
  • 6Peng T,Leckie C,Kotagiri R. Proactively detecting distributed denial of service attacks using source IP address monitoring [C]//Proc of the 3rd Int IFIP-TC6 Networking. Berlin:Springer Verlag, 2004 : 771-782.
  • 7Vapnik V. The Nature of Statistical Learning Theory [M]. NewYork: Springer Vedag, 1995.
  • 8Marina Thruttan. Adaptive Thresholding for Proactive Net- work Problem Detection[C]//Proc of IEEE Internation Work- shop on System Management, Rhode Island. NewYork: Springer Verlag, 1998 : 108-116.
  • 9Rastegari S,Saripan M I, Rasid M F. A detection of denial of service attacks against domain name system using neural net- works [J]. UCSI International Journal of Computer Science, 2009,15 (1) :23-27.
  • 10Nasibov E, Peker S, Time series labeling algorithms based on the K-nearest neighbors' frequencies[J]. Expert Systems with Applications,2011,38 (5) :5028-5035.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部