期刊文献+

基于蒙特卡罗模拟的交通状态辨识 被引量:6

Traffic Status Identification Based on Monte Carlo Simulation
下载PDF
导出
摘要 提出了一种基于蒙特卡罗模拟的利用交通流参数实现交通状态辨识的方法.采用FANNY算法实现了四种交通状态的聚类分析;利用蒙特卡罗模拟方法建立了SVC交通状态辨识模型;分别构建了固定窗口模型和滑动窗口模型对交通状态进行辨识并综合评价.分析结果表明:该方法能够对实时交通流参数进行准确辨识,尤其是构建的滑动窗口模型,对交通状态辨识平均精度、召回率和F度量分别为97.98%、94.64%和96.21%.本方法可为分析高速公路交通状态演化规律和发展趋势,建立预测预警、应急处置和信息发布等应急运行机制提供科学方法和数据支撑. A method of using traffic flow parameters is proposed for traffic status identification based on Monte Carlo simulation. Clustering analysis of four kinds traffic status is realized by applying FANNY algorithm, and SVC traffic status identification model is established using Monte Carlo simulation method. Fixed window model and sliding window model are built respectively to identify and conduct comprehensive evaluation on traffic status. Results indicate that the method can achieve accurate identification of real-time traffic flow parameters, especially with sliding window model, of which average identification accuracy, recall and F-measure are 97.98%, 94.64% and 96.21% respectively. It provides scientific methods and data support for analyzing evolution regularity and development trend of traffic status, as well as establishing emergency operation mechanism such as prediction and forewarning, emergency disposal and information release.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第3期43-50,57,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金项目(51308057) 陕西省自然科学基金项目(2013JQ8006) 教育部创新团队发展计划资助项目(IRT1050) 中央高校基本科研业务费专项资金项目(2013G3324005)
关键词 公路运输 交通状态辨识 蒙特卡罗模拟 交通流参数 SVC 数据挖掘 highway transportation traffic status identification Monte Carlo simulation traffic flow parameters SVC data mining
  • 相关文献

参考文献11

  • 1Kerner. Introduction to modern traffic flow theory and control: The long road to three-phase traffic theory[M]. New York: Springer ,2009: 221-243.
  • 2皮晓亮,王正,韩皓,孙亚.基于环形线圈检测器采集信息的交通状态分类方法应用研究[J].公路交通科技,2006,23(4):115-119. 被引量:33
  • 3董春娇,邵春福,熊志华.基于优化SVM的城市快速路网交通流状态判别[J].北京交通大学学报,2011,35(6):13-16. 被引量:12
  • 4陈红,章渺,王龙飞,赵禹乔.高等级公路路段交通状态融合识别模型[J].重庆交通大学学报(自然科学版),2010,29(5):772-775. 被引量:2
  • 5Dunn. Well-separated clusters and optimal fuzzy parti- tions[J]. Journal of Cybernetics, 1974,4(1): 95-104.
  • 6Bezdek. Pattern recognition with fuzzy objective function algorithms[M]. New York: Springer, 1981: 256.
  • 7Kaufman, Rousseeuw. Finding groups in data: An intro- duction to cluster analysis[M]. Hoboken: Wiley, 2008: 189-191.
  • 8Dodge. Statistical data analysis based on the L1-Normand related methods[M]. Switzerland: Birkhauser Basel, 2002. ISO/IEC Guide 98-3:2008/Suppl 1:2008.
  • 9Propagation of distributions using a Monte Carlo method[S]. Geneva, Switzerland: International Organization for Standardiza- tion, 2008.
  • 10Han, Kamber, Pei. Data mining: concepts and tech- niques, Third edition[M]. New York: Morgan Kaufmann, 2011.

二级参考文献24

  • 1邹亮,徐建闽,朱玲湘.基于融合技术的道路交通状态判别模型[J].清华大学学报(自然科学版),2007,47(z2):1822-1825. 被引量:20
  • 2王建宏,李新.基于Vague集的模糊信息融合研究[J].华中科技大学学报(自然科学版),2004,32(8):54-56. 被引量:19
  • 3郭伟,姚丹亚,付毅,胡坚明,刘宁.区域交通流特征提取与交通状态评估方法研究[J].公路交通科技,2005,22(7):101-104. 被引量:38
  • 4周晓光,张强.Vague集(值)相似度量的比较和改进[J].系统工程学报,2005,20(6):613-619. 被引量:31
  • 5Hua J Y, Ardeshir F. Dynamic Traffic Pattern Classification Using Artificial Neural Networks [ R ]. Washington D. C. : Transportation Research Record, 1993 : 14 - 19.
  • 6Benjamin A, Coifman R M. Distributed surveillance on freeways emphasizing incident detection and verification [J]. Transporta- tion Research: Part A, 2007 (41) : 750 -767.
  • 7Dipti S, Xin J, Ruey L C. Adaptive neural network models for automatic incident detection on freeways [ J]. Neurocomputing, 2005 (64) : 473 - 496.
  • 8Wang W, Chen Sh Y, Qu G F. Incident detection algorithm based on partial least squares regression [ J ]. Transportation Research: Part C, 2008 (16) :54 -70.
  • 9Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8 (3): 338- 356.
  • 10Gau W L,Buehrer D J. Vague sets [ J]. IEEE Trans. Systems Man Cybernetic, 1993, 23 : 610 -614.

共引文献44

同被引文献40

  • 1李清泉,高德荃,杨必胜.基于模糊支持向量机的城市道路交通状态分类[J].吉林大学学报(工学版),2009,39(S2):131-134. 被引量:26
  • 2Huang H L, Abdel A M, Darwiche A L. County-level crash risk analysis in florida: Bayesian spatial modeling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010(2148): 27- 37.
  • 3Hinsbergen, Lint, Zuylen. Bayesian committee of neural networks to predict travel times with confidence intervals[J]. Transportation Research Part C: Emerging Technologies,2009,17(5): 498-509.
  • 4Chickering, Heckerman, Meek. Large-sample learning of Bayesian networks is NP-hard[J]. Journal of Machine Learning Research,2004,5(8): 1287-1330.
  • 5Perrier, Imoto, Miyano. Finding optimal Bayesian network given a super-structure.[J]. Journal of Machine Learning Research,2008,9(10): 2251-2286.
  • 6Neapolitan, Richard. Learning Bayesian networks[M]. NJ: Prentice Hall,2003: 674.
  • 7Heckerman, Geiger, Chickering. Learning Bayesian networks: The combination of knowledge and statistical data[J]. Machine Learning,1995,20(3): 197-243.
  • 8Scutari, Nagarajan. On identifying significant edges in graphical models of Molecular Networks[J]. Artificial Intelligence in Medicine,2013,57(3): 207-217.
  • 9Ide, Cozman. Random generation of Bayesian networks[M]. Berlin: Springer-Verlag,2002: 366-376.
  • 10徐天东,郝媛,孙立军.城市快速路实时交通状态估计器的构建[J].计算机工程,2008,34(17):26-27. 被引量:1

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部