摘要
提出了一种基于蒙特卡罗模拟的利用交通流参数实现交通状态辨识的方法.采用FANNY算法实现了四种交通状态的聚类分析;利用蒙特卡罗模拟方法建立了SVC交通状态辨识模型;分别构建了固定窗口模型和滑动窗口模型对交通状态进行辨识并综合评价.分析结果表明:该方法能够对实时交通流参数进行准确辨识,尤其是构建的滑动窗口模型,对交通状态辨识平均精度、召回率和F度量分别为97.98%、94.64%和96.21%.本方法可为分析高速公路交通状态演化规律和发展趋势,建立预测预警、应急处置和信息发布等应急运行机制提供科学方法和数据支撑.
A method of using traffic flow parameters is proposed for traffic status identification based on Monte Carlo simulation. Clustering analysis of four kinds traffic status is realized by applying FANNY algorithm, and SVC traffic status identification model is established using Monte Carlo simulation method. Fixed window model and sliding window model are built respectively to identify and conduct comprehensive evaluation on traffic status. Results indicate that the method can achieve accurate identification of real-time traffic flow parameters, especially with sliding window model, of which average identification accuracy, recall and F-measure are 97.98%, 94.64% and 96.21% respectively. It provides scientific methods and data support for analyzing evolution regularity and development trend of traffic status, as well as establishing emergency operation mechanism such as prediction and forewarning, emergency disposal and information release.
出处
《交通运输系统工程与信息》
EI
CSCD
北大核心
2014年第3期43-50,57,共9页
Journal of Transportation Systems Engineering and Information Technology
基金
国家自然科学基金项目(51308057)
陕西省自然科学基金项目(2013JQ8006)
教育部创新团队发展计划资助项目(IRT1050)
中央高校基本科研业务费专项资金项目(2013G3324005)
关键词
公路运输
交通状态辨识
蒙特卡罗模拟
交通流参数
SVC
数据挖掘
highway transportation
traffic status identification
Monte Carlo simulation
traffic flow parameters
SVC
data mining