期刊文献+

基于Hilbert曲线的STR索引改进算法 被引量:5

An Improved STR-tree Spatial Index Algorithm Based on Hilbert-curve
原文传递
导出
摘要 递归网格排序算法(sort-tile-recursive,STR)是一种性能优良的静态变体,其构建效率高效,查询性能较为优良,但是没有很好的兼顾到数据本身的聚集特性。Hilbert曲线具有较好的数据聚集特性,但是存在一定信息的丢失。本文利用Hilbert曲线的聚集性来提高STR-树的数据聚集性能,提出了一种基于Hilbert编码的STR索引改进算法,并在改进中弥补信息丢失的问题。算法首先按照MBR的Hilbert值进行排序,根据节点容量生成子节点,形成各聚类中心,针对Hilbert异常值采用距离约束条件进行处理;迭代以上过程,生成Hilbert STR-树。研究结果表明,该算法的查询效率优于STR-树和R树。 The Sort-Tile-Recursive(STR)is a static R-tree variation,with outstanding build efficiency and acceptable query efficiency.The only problem the aggregation of data.Hilbert curve can ensure data aggregation however,some other information missed.In order to solve deficiency STR-tree,an improved STR-tree spatial index algorithm based on Hilbert-curve is proposed.This paper focuses on the offset caused by dimensionality reduction during the build process.algorithm sorts the objects by the Hilbert value of its MBRs,generates the temp-abstract nodes according to the node capacity,and records the center of each cluster.Second,the algorithm processes Hilbert outliers by adding the distance constraint.Third,iterating the above process until Hilbert STR-tree is built.Both theoretic analysis and experiments indicate that our algorithm performs more efficiently than the STR-tree querying.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2014年第7期777-781,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40901186 41271446 41201485)~~
关键词 空间索引 HILBERT曲线 STR-树 聚类 R-树 spatial index Hilbert curve STR-tree clustering R-tree
  • 相关文献

参考文献14

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2Guttman A. R-trees: a Dynamic Index Structure for Spatial Searching [C]. Proceedings of ACM SIG- MOD, Boston, MA, 1984.
  • 3Kamel I, Faloutsos C. On Packing R-trees[C]. Proceedings 2nd International Conference on Infor- mation and Knowledge Management, Arlington,VA, 1993.
  • 4Kamel I, Faloutsos C. Hilbert R-tree: An Im- proved R-tree Using Fractals[C]. Proceedings of International Conference on very Large Databases, Santiago de Chile, Chile,1994.
  • 5Leutenegger S, Edgington J M, Lopez M A. STR: A Simple and Efficient Algorithm for R-tree Packing [C] . Proceedings of the 13th IEEE ICDE, Birming- ham, England, 1997.
  • 6Beckmann N, Kriegel H P, Schneider R, et al. The R *-tree: An Efficient and Robust Access Method for Points and Rectangles[C]. ACM SIGM OD, Atlantic City, New Jersey, 1990.
  • 7Han J W, Kamber M. Data Mining: Concepts and Technologies [ M]. San Franciso: Morgan Kauf- mann Publishers, 2000.
  • 8贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 9Chen H L, Chang Y I. All Nearest Neighbors Find- ing Based on the Hilbert Curve[J]. Expert Systems with Applications, 2011, 38(6):7 462-7 475.
  • 10Frisken S F, Perry R N. Simple and Efficient Trav- ersal Methods for Quadtrees and Octrees[J]. Jour- nal of Graphics Tools, 2002, 7(3) :1-11.

二级参考文献131

  • 1Papadopoulos A.N., Manolopoulos Y.. Performance of nearest neighbor queries in R-trees. In: Proceedings of ICDT, Delphi, Greece, 1997, 394~408.
  • 2An N., Yang Zhen-Yu, Sivasubramaniam A.. Selectivity estimation for spatial joins. In: Proceedings of ICDE, Heidelberg, Germany, 2001, 368~375.
  • 3Sun Chengyu, Agrawal D., Abbadi A.E.. Selectivity estimation for spatial joins with geometric selections. In: Proceedings of EDBT, Prague, Czech Republic, 2002, 609~626.
  • 4Kamel I., Faloutsos C.. Parallel R-trees. In: Proceedings of SIGMOD, San Diego, California, 1992, 195~204.
  • 5Papadopoulos A., Manolopoulos Y.. Similarity query processing using disk arrays. In: Proceedings of SIGMOD, Seattle, Washington, USA, 1998, 225~236.
  • 6Koudas N., Faloutsos C., Kamel I.. Declustering spatial databases on a multi-computer architecture. In: Proceedings of EDBT, Avignon, France, 1996, 592~614.
  • 7Brinkhoff T., Kriegel Hans-Peter, Seeger B.. Parallel processing of spatial joins using R-trees. In: Proceedings of ICDE, New Orleans, Louisiana, 1996, 258~265.
  • 8Papadopoulos A., Manolopoulos Y.. Parallel processing of nearest neighbor queries in declustered spatial data. In: Proceedings of ACM-GIS, Rockville, MD, 1996, 35~43.
  • 9Papadopoulos A., Manolopoulos Y.. Nearest neighbor queries in shared-nothing environments. Geoinformatica, 1997, 1(4): 369~392.
  • 10Fu X., Wang D., Zheng W.. GPR-tree: A global parallel index structure for multiattribute declustering on cluster of work- stations. In: Proceedings of APDC'97, Shanghai, China, 1997, 300~306.

共引文献318

同被引文献38

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部