期刊文献+

PTFE/Al反应多层膜的制备及力学性能 被引量:2

Preparation and Mechanical Properties of PTFE/Al Reactive Multilayer Films
下载PDF
导出
摘要 以铝(Al)为可燃物质,聚四氟乙烯(PTFE)为氧化剂,利用射频磁控溅射法制备了不同厚度,交替沉积的PTFE/Al反应多层膜。采用原子力显微镜(AFM)、X-射线衍射仪(XRD)研究了溅射功率对薄膜表面形貌的影响规律,得到了PTFE/Al反应多层膜适宜的制备工艺,利用纳米压痕仪研究了PTFE/Al反应多层膜的力学性能。结果表明,当射频溅射功率分别为50 W和150 W时,制得的PTFE薄膜和Al薄膜的平均粗糙度与均方根粗糙度均较低。当PTFE/Al反应多层膜总厚度约为300 nm时,与相同厚度的纯PTFE膜和纯Al膜相比,PTFE/Al反应多层膜具有较高的硬度和弹性模量,分别为5.8 GPa和120.0 GPa。 PTFE/Al( polytetrafluoroethylene /aluminum) reactive multilayer films with different thickness and alternating deposition were prepared by a radio frequency magnetron sputtering method using Al as combustible and PTFE as oxidant. The influence rules of sputtering power on the film surface morphology was investigated by atomic force microscope( AFM) and X-ray diffraction( XRD). The appropriate preparation technology of the films was obtained. The mechanical property of PTFE/Al reactive multilayer films was measured by a nano-indentation apparatus. Results show that when the radio frequency sputtering power is 50 W and 150 W,the mean roughness and RMS roughness of PTFE film and Al film obtained are low. When the total thickness of PTFE/Al reactive multilayer films is about 300 nm,in comparison with pure PTFE film and Al film,PTFE/Al reactive multilayer films have higher hardness and elastic modulus: 5. 8 GPa and120. 0 GPa,respectively.
出处 《含能材料》 EI CAS CSCD 北大核心 2014年第3期365-370,共6页 Chinese Journal of Energetic Materials
基金 国家自然科学基金(11002128 11272292 11372288 11172275和11172276) 青年人才基金(Q N R C-201201)
关键词 物理化学 聚四氟乙烯/铝(PTFE/Al) 纳米反应多层膜 磁控溅射 力学性能 physical chemistry PTFE/Al reactive multilayer films magnetron sputtering mechanical property
  • 相关文献

参考文献24

  • 1Zhu P, Shen R, Ye Y, et al. Energetic igniters realized by in- tegrating AI/CuO reactive multilayer films with Cr films[J]. Jour- nal of Applied Physics, 2011 , 110(7) : 13-15.
  • 2Qiu X, Tang R, Liu R, et al. A micro initiator realized by reac- tive Ni/AI nanolaminates for MEMS applications[ C]//Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUC- ERS), 2011 16th International. IEEE, 2011: 1665-1668.
  • 3Zhang K, Rossi C, Petrantoni M, et al. A nano initiator realized by integrating AI/CuO-based nanoenergetic materials with an Au/Pt/Cr microheater [J]. Journal of Microelectromechanical Systems, 2008, 17(4): 832-836.
  • 4Petrantoni M, Rossi C, Salvagnac L, et al. Multilayered AI/CuO thermite formation by reactive magnetron sputtering: Nano ver- susmicro[J]. Journal of Applied Physics, 2010, 108(8): 23- 25.
  • 5Kwon J, Ducore J M, Alphonse P, et al. Interfacial chemistry in AI/CuO reactive nanomaterial and Its role in exothermic reaction [J]. ACS Applied Materials & Interfaces, 2013, 5 (3) : 605 - 613.
  • 6Zhu P, Li D, Fu S, et al. Improving reliability of SCB initiators based on AI/Ni multilayer nanofilms[J]. The European Physical Journal Applied Physics, 2013, 63 (01) : 10302-10308.
  • 7Morris C J, Mary B, Zakar E, et al. Rapid initiation of reactions in AI/Ni multilayers with nanoscale layering [J]. Journal of Physics and Chemistry of Solids, 2010, 71 (2) : 84-89.
  • 8Makowiecki D M, Sionta R M. The synthesis of nickel alumin- ides by multilayer self-propagating combustion: US Patent 5381944[ P], 1995.
  • 9Zhang K, Rossi C, Alphonse P, et al. Integrating AI with NiO nano honeycomb to realize an energetic material on silicon sub- strate[J]. Applied PhysicsA, 2009, 94(4): 957-962.
  • 10Zhu P, Shen R, Fiadosenka N N, et al. Dielectric structure pyro- technic initiator realized by integrating Ti/CuO-based reactive multilayer films[J]. Journal of Applied Physics, 2011 , 109(8) : 23 -26.

二级参考文献9

  • 1Daniel B N, Richard M T, Nikki R. Low Temperature Extrudable High Density Reactive Materials [P]. US 6962634, 2005.
  • 2Michael T R, Daniel W D, James R H, et al. Reactive Material Enhanced Projectiles and Related Methods [P]. US 20060011086, 2006.
  • 3William J F. Reactive Fragrant Warhead for Enhanced Neutralization of Mortar, Rocket, and Missile Threats[R]. ONR-SBIR, N04 - 903, 2005.
  • 4Joshi V S. Process for Making Polytetrafluoroethylene-Aluminum Composite and Product Made [P]. US 6547993, 2003.
  • 5Vavrick D J. Reinforced Reactive Material [P]. US 20050067072, 2005.
  • 6张彤.含能破片材料的制备及毁伤性研究[D].长沙:国防科技大学,2006.
  • 7黄亨建,黄辉,阳世清,杨攀,张彤,习彦,卢校军.毁伤增强型破片探索研究[J].含能材料,2007,15(6):566-569. 被引量:42
  • 8蒋鸿旺.现代海战中的红外诱饵[J].现代军事,1995,0(6):41-43. 被引量:2
  • 9付伟.红外干扰弹技术的发展现状[J].红外技术,2000,22(6):37-40. 被引量:16

共引文献65

同被引文献26

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部