期刊文献+

玉米农田冠层光合参数的多光谱遥感反演 被引量:7

Estimating canopy photosynthetic parameters in maize field based on multi-spectral remote sensing
原文传递
导出
摘要 冠层光合参数的准确定量遥感反演是生态系统遥感模型的核心与关键。基于2011年玉米(Zea mays)整个生长发育期的冠层光谱反射率、生态系统CO2通量、微气象因子以及玉米光合生理生态指标的观测数据,开展了玉米农田生态系统冠层光合能力(Pmax,最大光合速率)与光合效率(εN,净CO2通量交换/吸收光合有效辐射(NEECO2/APAR);εG,总初级生产力/吸收光合有效辐射(GPP/APAR);α,表观量子效率)参数的多光谱遥感反演能力评估研究。结果表明,Pmax和α在整个生长季呈现单峰型变化趋势,分别于7月底、8月初达到峰值,而光合效率参数εN和εG在玉米营养生长早期数值较高,随着玉米生长发育迅速降低,而后呈现单峰型的变化趋势,峰值出现时间基本与Pmax最大值发生时间一致。基于两波段任意组合的遥感植被指数NDVI(normalized difference vegetation index)、RVI(ratio vegetation index)、WDRVI(wide dynamic range vegetation index)、EVI2(2-band enhanced vegetation index)和CI(chlorophyll index)与玉米冠层4个光合参数的统计分析表明,EVI2对冠层光合效率与光合能力参数的反演与表征效果最佳。研究表明,多光谱遥感信息对玉米生态系统冠层光合参数的变异具有较强的敏感性,可以用来监测玉米冠层光合作用的季节动态变化以及准确定量评估作物生产力和生态系统CO2交换能力。 Aims Determination of canopy photosynthetic parameters is key to accurate simulation of ecosystem function by using remote sensing methods. Currently, remote estimation of vegetation canopy structure characteristics has been widely adopted. However, directly estimating photosynthetic variables(photosynthetic capacity and efficiency) at canopy scale based on field spectrometry combined with CO2 flux measurements is rare. Methods In this study, we remotely estimated solar radiation use efficiency(εN, net ecosystem CO2 exchange/absorbed photosynthetically active radiation(NEECO2/APAR); εG, gross primary productivity/absorbed photosynthetically active radiation(GPP/APAR); α, apparent quantum efficiency) and photosynthetic capacity(Pmax) based on in situ measurements of spectral reflectance and ecosystem CO2 fluxes, along with observational data on micrometeorological factors during the entire growing season for a maize canopy in Northeast China. Important findings Results showed that the seasonal variations in Pmax and α exhibited a single peak; whereas the values of εN and εG were higher at the start of vegetative stage and then rapidly decreased with the development of maize until displaying a single peak at the intermediate and late stages of the growing season, coinciding with the occurrence of peak values in Pmax. A comparison was made on the predictive performance based on normalized difference vegetation index(NDVI), ratio vegetation index(RVI), wide dynamic range vegetation index(WDRVI), 2-band enhanced vegetation index(EVI2), and chlorophyll index(CI) in estimating four canopy photosynthetic parameters with any combination of two separate wavelengths at the range of 400–1 300 nm, which showed that EVI2 was most closely and linearly related to photosynthetic capacity and efficiency. This study demonstrates that multi-spectral remote sensing information is sensitive to the variations in canopy photosynthetic parameters in maize field and can be used to quantitatively monitor seasonal dynamics of canopy photosynthesis, and to accurately assess crop productivity and ecosystem CO2 exchange capacity.
作者 张峰 周广胜
出处 《植物生态学报》 CAS CSCD 北大核心 2014年第7期710-719,共10页 Chinese Journal of Plant Ecology
基金 国家自然科学基金重点项目(41330-531) 公益性行业科研专项经费(GYHY201106027) 国家重点基础研究发展计划(2010CB951303)
关键词 涡度相关 野外光谱测量 光合能力 光合效率 遥感植被指数 eddy covariance field spectrometry photosynthetic capacity photosynthetic efficiency spectral vegetation indices
  • 相关文献

参考文献24

  • 1Baldocchi DD (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosys- tems: past, present and future. Global Change Biology, 9, 479-492.
  • 2Cho MA, Skidmore AK (2009). Hyperspectral predictors for monitoring biomass production in Mediterranean mountain grasslands: Majella National Park, Italy. International Journal of Remote Sensing, 30, 499-515.
  • 3Gitelson AA (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161,165-173.
  • 4Gitelson AA, Vifia A, Arkebauer T J, Rundquist DC, Keydan G, Leavitt B (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Re- search Letters, 30, 1248, doi: 10.1029/2002GL016450.
  • 5Gitelson AA, Vina A, Ciganda V, Rundquist DC, Arkebauer TJ (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32, L08403, doi: 10.1029/2005GL022688.
  • 6Gitelson AA, Vifia A, Verma SB, Rundquist DC, Arkebauer T J, Keydan G, Leavitt B, Ciganda V, Burba GG, Suyker AE (2006). Relationship between gross primary production and chlorophyll content in crops: implications for the syn- optic monitoring of vegetation productivity. Journal of Geophysical Research, 111, D08S11, doi: 10.1029/2005- JD006017.
  • 7Goulden ML, Daube BC, Fan SM, Sutton D J, Bazzaz A, Munger JW, Wofsy SC (1997). Physiological responses of a black spruce forest to weather. Journal of Geophysical Research, 102, 28987-28996.
  • 8Goward SM, Huemmerich KE (1992). Vegetation canopy PAR absorptance and the normalized difference vegetation in- dex: an assessment using the SAIL model. Remote Sensing of Environment, 39, 119-140.
  • 9Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Biotic and abiotic factors controlling the spatial and tem- poral variation of soil respiration in an agricultural eco- system. Soil Biology & Biochemistry, 39, 418-425.
  • 10Ide R, Nakaji T, Oguma H (2010). Assessment of canopy pho- tosynthetic capacity and estimation of GPP by using spec- tral vegetation indices and the light-response function in a larch forest. Agricultural and Forest Meteorology, 150, 389-398.

二级参考文献35

  • 1董云社,齐玉春,刘纪远,耿元波,M.Domroes,杨小红,刘立新.不同降水强度4种草地群落土壤呼吸通量变化特征[J].科学通报,2005,50(5):473-480. 被引量:38
  • 2李俊,于强,孙晓敏,同小娟,任传友,王靖,刘恩民,朱治林,于贵瑞.华北平原农田生态系统碳交换及其环境调控机制[J].中国科学(D辑),2006,36(A01):210-223. 被引量:56
  • 3任秀娥,王勤学,童成立,吴金水,王克林,朱咏莉,林泽建,渡边正孝,唐国勇.亚热带稻田生态系统土壤呼吸的估算[J].科学通报,2007,52(13):1548-1553. 被引量:11
  • 4Wood S,Sebastian K,Scherr S J.Pilot Analysis of Global Ecosystems:Agroecosystems.Washington DC:IFPRI,WRI,2000.2-36.
  • 5Suyker A E,Verma S B,Burba G G,et al.Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season.Agric For Meteorol,2005,131:180-190.
  • 6Verma S B,Dobermann A,Cassman K G,et al.Annual carbon dioxide exchange in irrigated and rained maize-based agroecosystems.Agric For Meteorol,2005,131:77-96.
  • 7Suyker A E,Verma S B,Burba G G,et al.Growing season carbon dioxide exchange in irrigated and rainfed maize.Agric For Meteorol,2004,124:1-13.
  • 8Hollinger S E,Bernacchi C J,Meyers T P.Carbon budget of mature no-till ecosystem in North Central Region of the United States.Agric For Meteorol,2005,130:59-69.
  • 9Law B E,Falge E,Gu L,et al.Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.Agric For Meteorol,2002,113:97-120.
  • 10West T O,Marland G.Net carbon flux from agricultural ecosystems:Methodology for full cycle analyses.Environ Pollut,2002,116:439-444.

共引文献20

同被引文献217

引证文献7

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部