期刊文献+

基于多级别特征融合的医学图像检索技术 被引量:2

Medical Image Retrieval Based on Multi-level Feature Fusion
下载PDF
导出
摘要 针对医学胸部CT扫描图像,在分别研究单一特征检索算法基础上,提出了基于底层—底层和底层—高层两种级别的特征融合检索方法.据此,用VC#和SQL server2005实现了一个图像检索原型系统,验证了所提方法的有效性. In allusion to chest CT image database,a multi-level feature fusion algorithm including low-low level and low-high level is proposed based on the study of single feature.Then,a prototype system which supports query by example is implemented using VC# and SQL server 2005,and the experimental results shows that the approach is effective.
作者 宋卫华
出处 《南华大学学报(自然科学版)》 2014年第2期76-78,83,共4页 Journal of University of South China:Science and Technology
关键词 医学图像检索 语义信息 多级别特征融合 medical image retrieval semantic information multi-level feature fusion
  • 相关文献

参考文献8

  • 1钱晶,高月松.图像检索系统中的CBIR技术研究[J].电脑知识与技术(过刊),2011,17(1X):415-416. 被引量:8
  • 2Pan Zhongling, Chen Ling. Image Retrieval Method based on cultural evolutionary algorithms [ J ]. Journal of Infor- mation,2009,6(2) :951-958.
  • 3陆丽珍,刘仁义,刘南.一种融合颜色和纹理特征的遥感图像检索方法[J].中国图象图形学报(A辑),2004,9(3):328-333. 被引量:37
  • 4Song Weihua, Han Jing, Hua Tingting. A method for medical image retrieval using multi-level feature fusion [ J]. Journal of Information ,2009,6(2) :967-974.
  • 5Wang Jing, Liu Zhijing. An improved clustering algorithm for web document [ J 1. Journal of Information, 2009,6 (2) :959-966.
  • 6Shehata S, Karray F, Kamel M S. An efficient concept- based mining model for enhancing text clustering [ J ]. IEEE Transactions on Knowledge and Data Engineer- ing,2010,22(10) : 1360-1371.
  • 7吕晓琪,刘伟,谷宇,张明.医学图像检索中基于加权马氏距离的相关反馈方法[J].微电子学与计算机,2013,30(4):37-40. 被引量:2
  • 8Rubin T N, America Chambers, Smyth P, et al. Statisti- cal topic models for multi-label document classification [ J ]. Machine Learning, 2012,88 ( 1/2 ) : 157-208.

二级参考文献17

  • 1姚宏宇,李弼程.基于广义图像灰度共生矩阵的图像检索方法[J].计算机工程与应用,2004,40(34):98-100. 被引量:19
  • 2Niblack W, Jose S, Barber R, et al. The QBIC project:query images by content using color, texture and shape Proceeding of SPIE[C], San Joe, California, USA, 1993.1908:173-187.
  • 3Marques O, Furht B. MUSE: content-based image search and retrieval system using relevance feedback[J]. Multimedia Toolsand Applications, 2002, 17(4): 21-50.
  • 4Sheikholeslami G, Zhang Ai-dong. A multi-resolution contentbased retrieval approach for geographic images [J].Geolnformatica, 1999, 3(2): 109-139.
  • 5Kitamoto A, Takagi M. Retrieval of satellite cloud imagery based on subiective similarity[A]. In:Proceedings of the 9th Scandinavian Conference on Image Analysis (SCIA'95)[C],Uppsala, Sweden, 1995, 6:449-456.
  • 6Zhu Bin, Ramsey M, Hsinchun Chen. Creating a large-scale content-based airphoto image digital library[J]. IEEE Transactions on Image Processing, 2000, 9(1) : 163-167.
  • 7Jain Anil K, Farshid Farroknia. Unsupervised texture segmentation using Gabor filters[J]. Pattern Recognition. 1991 ,12(24) : 1167-1186.
  • 8Tan Kian 1.ee, Ooi Beng Chin, Yee Chia Yeow. An evaluation of color-spatial retrieval techniques for large image databases[J]. Multimedia Tools and Applications, 2001.14(1):55-78.
  • 9Muller H, Michoux N, Bandon D, et al. A review of content-based image retrieval systems in medical applications clinical benefits and future directions [J]. Medical Informatics, 2004, 73(1)I 1-23.
  • 10Rahman M, Bhattacharya P, Desai B C. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback [J]. IEEE Transactions on Information Technology in Biomedicine, 2007, 11(1): 58-69.

共引文献43

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部