期刊文献+

酿酒酵母苏氨酸合成酶缺失对高级醇生成量的影响 被引量:4

Effects of THR4 Gene Deletion in S.cerevisiae on Higher Alcohols Yield
下载PDF
导出
摘要 通过构建酿酒酵母苏氨酸合成酶基因(THR4)缺失的工程菌株,研究该基因对酿酒酵母高级醇生成量的影响。以质粒pUC-19为载体,KanMX抗性基因为筛选标记,构建了重组质粒pUC-TABK,经PCR扩增得到YAKanMX-YB重组盒,并以酿酒酵母AY15单倍体α5为出发菌株,通过醋酸锂转化和G418抗性筛选,获得THR4基因缺失的突变株α5-T7。将转化子和亲本菌株分别进行模拟酒精发酵及酒精浓醪发酵,发酵结束后进行发酵性能和高级醇生成量的测定。结果显示,与亲本菌株相比,突变株正丙醇生成量分别提高了1.61倍和2.6倍,异戊醇生成量分别提高了0.27倍和0.24倍,而异丁醇生成量没有明显差异,表明THR4基因缺失会使酿酒酵母高级醇特别是正丙醇生成量提高。 In this study, the engineering strain with the deletion of threonine synthase gene(THR4 gene) in industrial S.cerevisiae haploid α5 was constructed to investigate the effects of THR4 deletion strain on higher alcohols yield. Upper and down stream fragments of THR4 gene TA, TB and the resistance gene KanMX were orderly inserted into vector pUC-19 to construct recombinant plasmid pUC-TABK. The recombinant cassette YA-KanMX-TB was cloned from plasmid pUC-TABK by PCR and transformed into α5, then mutant THR4 gene-deletion α5-T7 was selected by YEPD agar plates containing 1000 μg/mL G418. The Fermenting performance and higher alcohols yield of parental haploid and THR4 mutant were determined at the end of simulation ethanol fermentation and high gravity ethanol fermentation. The results showed that, the production of the n-propanol in THR4 mutant was 1.61 and 2.6 fold higher than that of parental haploid, respectively, and the production of isoamyl alcohol was increased 0.27 and 0.24 fold, compared with parental haploid, and there was no significant difference in isobutanol yield between parental haploid and THR4 mutant. The results suggested that THR4 gene deletion could increase higher alcohols yield especially the yield of n-propanol in S. cerevisiae.
出处 《酿酒科技》 北大核心 2014年第7期26-30,共5页 Liquor-Making Science & Technology
基金 白酒微生物的选育及代谢调控研究("十二五"农村领域国家科技计划课题:酿酒原料高效安全制造技术研究 2013AA102108子课题) 天津市科委青年基金(12JCQNJC06500)
关键词 酿酒酵母 苏氨酸合成酶 THR4基因 高级醇 S.cerevisiae threonine synthase THR4 gene higher alcohols
  • 相关文献

参考文献7

  • 1A Eden, L Van Nedervelde, M Drukker, N Benvenisty, A Debourg. Involvement of branched-chain amino acid amino- transferases in the production of fusel alcohols during fermenta- tion in yeast[J]. Appl Microbiol Biotechnol 2001, 55:296-300.
  • 2C R Shen, J C Liao. Metabolic engineering of Escheriehia coil for l-butanol and l-propanol production via the keto-acid pathways[J]. Metabolic Engineering, 2008, 10:312-320.
  • 3D Vollbrecht. Three pathways ofisoleucine biosynthesis in mutant strains ofSaccharomyces cerevisiae[J]. Biochimica et BiopHysica Acta, 1974, 362:382-389.
  • 4Cayo Ramos, Isabel L. Calderdn. Biochemical evidence that the Saccharomyces cerevi,:iae THR4 gene encodes threonine syn- thetase[J]. Federation of European Biochemical Societie Letters, 1994, 351 : 357-359.
  • 5Sambrook J ,Russell DW. Molecular Cloning: A Laboratory Manual[M]. 3rd ed. New York:Cold Spring Harbor Laboratory Press, 2001.
  • 6R Daniel Gietz, Robert H Schiestl. High-efficiency yeast trans- formation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1 ): 31-34.
  • 7陈贻文 李庆宏.有机仪器分析[M].长沙:湖南大学出版社,1996.235.

共引文献12

同被引文献70

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部