期刊文献+

页岩气开采中的井底压力并行计算 被引量:3

Parallel computing for bottom-hole pressure in shale gas reservoirs
下载PDF
导出
摘要 根据页岩气流动特点建立了考虑混合气体高压物性参数、渗透率与孔隙度随压力变化的页岩气流动方程,通过定义拟压力函数将页岩气流动的偏微分方程线性化。针对页岩气开发采用水平井多段压裂技术,采用Newman乘积原理得到地层拟压力流动方程的解析解表达式。依据解析解的特征将解析解分解成适合并行计算的无限求和及积分形式,提出了一套基于CUDA的页岩气地层压力算法,将地层拟压力函数解析解划分为多个并行度较高的步骤,利用GPU的并行计算能力,设计每个步骤的CUDA核函数,在英特尔i3 540CPU(3.07GHz主频,4GB内存)和NVIDIA的GTX 550显卡上,计算了页岩气的井底压力,分析了井底压力特征。实验结果表明,页岩吸附影响曲线变化剧烈程度,而扩散主要影响曲线发生变化的时间,在GPU上的页岩气压力计算可达近40倍的加速比。 Considering the varying permeability and porosity of shale with pressure and of Mixed Gas' s high pressure characteristics,flow equations of shale gas were derived and then linearized introducing the pseudo-pressure.Theoretical solutions to the Multiple Hydraulically Fractured Horizontal Well(MHFHW)were presented applying the Newman Product Principle.Finding that the theoretical solution was composed of integral and infinite sum that are highly parallel,an algorithm was proposed basing on GPUbased CUDA computation.Implementation of this algorithm on the platform with Intel i3 540CPU and NVIDIA GTX 550Ti GPU shows almost 40Xspeedup,in which way fulfilling the real-time calculation of the bottom-hole pressure of MHFHW.Further,parametric investigation on the obtained results shows that absorption decides the amplitude while diffusion exerts delay on the pressure and derivative curve.
出处 《计算力学学报》 CAS CSCD 北大核心 2014年第3期396-401,共6页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10932010) 国家科技重大专项(2011ZX05009-006)资助项目
关键词 页岩气 拟压力 GPU计算 流场计算 shale gas pseudo-pressure parallel computing flow simulation
  • 相关文献

参考文献10

  • 1King G E. Thirty years of shale gas fracturing: what have we Learned[A]. SPE 133456, SPEATCE[C]. Florence, 2010.
  • 2Buller D, Hughes S, Market J, et al. Petrophysical evaluation for enhancing hydraulic stimulation in hori- zontal shale gas wells[A]. SPE 132990, SPEATCE [C]. Florence, 2010.
  • 3Civan F,Rai C S,Sondergeld C H. Intrinsic shale per- meability determined by pressure-pulse Measure- ments using a multiple Mechanism apparent-gas-per- meability non-darcy model[A]. SPE 135087 ,SPEAT- CE[C]. Florence, 2010.
  • 4Britt L K, Schoeffler J. The geomechanics of a shale play: what makes a shale prospective [ A]. SPE125525, Eastern Regional Meeting[C]. 2009.
  • 5Aissa zerzar, Youcef bettam. Interpretation of multi- ple hydraulically fractured horizontal wells in closed systems[A]. SPE 84888, Improved Oil Recovery Con- ference[C]. Malaysia, 2003.
  • 6. Ozkan E, Raghavan R, Apaydin O G. Modelling of fluid transfer from shale matrix to fracture network [A]. SPE 134830,SPEATCE[C]. Florence,2010.
  • 7Home R N,Temeng K O. Relative productivities and pressure transient modelling of horizontal wells with multiple fractures[A]. SPE 29891, Middle East OilShow[C]. Bahrain, 1995.
  • 8Cipolla C L, Lolan E P, Erdle J C, et al. Reservoir modelling in shale gas reservoirs[J]. SPE Reservoir Evaluation and Engineering ,2010,13(4) : 638-653.
  • 9Palmer Ian, Mansoori J. How permeability depends on stress and pore pressure in coalbeds., a new model[J]. SPE Reservoir Evaluation& Engineering, 1998, 1 (6) :539-544.
  • 10Harris M. Optimizing Parallel Reduction in CUDA [EB/OL]. http://docs, nvidia, com/cuda/samples/6_ Advanced/reduction/doc/reduction. pdf, 2012.

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部