期刊文献+

基于优化算法的风机振动故障模拟与诊断

Simulation and diagnosis research on vibration fault of wind power generator based on the optimization algorithm
下载PDF
导出
摘要 为解决直驱永磁同步风力发电机(Direct Drive Permanent Magnet synchronous wind power Generator,DDPMG)振动故障数据匮乏和传统算法故障诊断准确率低的问题,根据传统同步发电机振动特性与DDPMG相似的特点,采用同步发电机对DDPMG进行振动故障模拟,获取DDPMG模拟振动在不同运行工况下的数据;并利用遗传算法(Genetic Algorithm,GA)分层优化最小二乘支持向量机(Least square Support Vector Machine,LS-SVM)参数的算法进行故障诊断。与未优化的LS-SVM诊断对比结果表明:采用优化算法的故障诊断准确率更高,可为后续DDPMG振动监测与故障诊断技术研究提供参考。 In order to solve the problems of the vibration fault data shortage and low accuracy of fault diagnosis rate in traditional algorithm for direct drive permanent magnet synchronous wind power generator( DDPMG) vibration fault,according to the trait of traditional synchronous generator vibration characteristic is similar to DDPMG,adopts synchronous generator to simulate the vibration faults of DDPMG,acquires the vibration data of simulating DDPMG under the different operation conditions, using genetic algorithm(GA) hierarchically to optimize the parameters of least square support vector machine(LS-SVM)makes fault diagnosis. Compare with the no optimization LS-SVM method,the diagnosis result shows that:the accuracy of fault diagnosis by the optimized algorithm is much higher,it can provide reference for later DDPMG vibration fault monitoring and diagnosis technology research.
出处 《宁夏电力》 2014年第3期27-31,44,共6页 Ningxia Electric Power
关键词 DDPMG GA LS-SVM 振动故障模拟 故障诊断 DDPMG GA LS-SVM vibration fault simulation fault diagnosis
  • 相关文献

参考文献8

二级参考文献21

  • 1韩捷.齿式联接不对中转子的故障物理特性研究[J].振动工程学报,1996,9(3):297-301. 被引量:43
  • 2Vapnik V. The Nature of Statistical Learning Theory[M]. Springer-Verlag, New York. 1995.
  • 3Cortes C, Vapnik V. Support vector networks [J].Machine Learning, 1995,20 : 273-297.
  • 4Poyhonen S, Negrea M, Arkkio A, et al. Fault diagnostics of an electrical machine with multiple support vector classifiers[A]. Intelligent Control. Proc. 2002 IEEE International Symposium[C]. 373-378.
  • 5Scholkopf B, Sung K K, Burge C, et al. Comparing support vector machines with Gaussian kernels to radial basis function classifiers[J]. IEEE Trans. Signal Processing, 1997,45(11):2 758-2 765.
  • 6Samanta B. Gear fault detection using artificial neural networks and support vector machines with genetic algorithms[J]. Mechanical system and signal processing, 2004,18(3)1625-644.
  • 7Jack L B, Nandi A K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms[J]. Mechanical systems and signal processing, 2002,16 (2) : 373-390.
  • 8Chih-Wei Hsu, Chih-Jen Lin. A comparison of methods for multi-class support vector machines[J]. Neural Networks, IEEE Transactions on, 2002,13(2):415-425.
  • 9Liu R W.Testing and diagnosis of analog circuits and systems[M].NY:Van Nostrand Reinhold,1991.
  • 10Vapnik Vladimir N,The Nature of Statistical Learning Theory[M].Springer2Verlag,New York,Inc,2000.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部