期刊文献+

亚临界雷诺数下圆柱和方柱绕流数值模拟 被引量:12

Numerical simulation of the flow around circular and square cylinder at sub-critical Reynolds numbers
下载PDF
导出
摘要 基于RNG k-ε模型,采用有限体积法对亚临界雷诺数条件下(Re=3×102~3×105)的二维单圆柱和单方柱绕流进行数值模拟与仿真。得到了圆柱和方柱绕流阻力系数Cd与Strouhal数随雷诺数的变化规律。同时对雷诺数Re=22 000下的圆柱、方柱绕流相关特性进行详细对比分析。计算结果表明:同一雷诺数下,单圆柱绕流阻力系数Cd较单方柱低,但圆柱的Strouhal数较单方柱则要高。虽然二者边界层分离点不同,但流场的演变与漩涡的脱落具有一定相似特性。 With the RNG κ-ε model and the finite volume method,the flow around a two-dimensional circular cylinder and a two-dimensional square cylinder at sub-critical Reynolds numbers was simulated and evaluated,and the trends of drag coefficients and Strouhal numbers with the change of Reynolds numbers from 3×10~2 to 3×10~5 were obtained.Meanwhile,characteristics of the flow around a circular cylinder and a square cylinder at Re=22 000 have been compared and analyzed in detail.Calculation results show that drag coefficient of flow around a circular cylinder is lower than the drag coefficient of flow around a square cylinder with the same Reynold number.However,the Strouhal number of flow around a circular cylinder is slightly higher than the Strouhal number of flow around a square cylinder.Though their boundary layer separation points are different,the flow field evolution and the vortex shedding of two cylinders have some similarities.
出处 《水道港口》 2014年第3期227-233,共7页 Journal of Waterway and Harbor
基金 国家科技支撑计划项目(2012BAB05B04)
关键词 亚临界雷诺数 圆柱和方柱 绕流 数值模拟 RNG k-ε模型 sub-critical Reynolds numbers circular and square cylinder flow around body numerical simulation RNG κ-ε model
  • 相关文献

参考文献13

二级参考文献21

  • 1[5]MURAKAMI S. MOCHIDA A. 3-D numerical simulation of airflow around a cubic model by means of the k-ε model[J]. Journal of Wind Engineering and Aerodynamics, 1988, 31: 327-338.
  • 2[6]MURAKAMI S. MOCHIDA A. Turbulent vortex shedding flow past 2D square cylinder predicted by CFD[J]. Journal of Wind Engineering and Industrial Aerodynamics,1995, 54/55: 191-211.
  • 3[7]YU Da-hai, ASHAN KAREEM. Numerical simulation of flow around rectangular prism[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 195-208
  • 4[8]DURAO D F G, PLESNIAK M W,BRAUN J C F. The effects of turbulence and periodic flows around a square cross-section cylinder[J]. Exp. Fluids, 1988, 6: 298-304.
  • 5[9]YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence basic theory[J]. Journal of Scientific Computing, 1986, 1(1): 3-5.
  • 6[10]SPEZIALE G G, THANGAM S. Analysis of an RNG based turbulence model for separated flows[J]. Int. J. Engrg. Sci., 1992, 30: 1379-1382.
  • 7[11]YAKHOT C, THANGAM S. Development of turbulence models for shear flows by a double expansion technique[J]. Phys. Fluids A, 1992, 4(7): 1510-1514.
  • 8[12]FLUENT INC. Fluent User's Guide, Vols.1-4[M]. Fluent Inc. Centerra Resource Park, Lebanon, New Hampshire, USA.,2003.
  • 9顾志福,J Industrial Aerodynamics,1993年,49卷,379页
  • 10Sun T F,J Industrial Aerodynamics,1992年,41页

共引文献1362

同被引文献53

引证文献12

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部