期刊文献+

基于情感分析的商品推荐系统的设计与实现 被引量:1

The Study and Design of the Commodity Recommendation System Based on Sentiment Analysis
下载PDF
导出
摘要 提出了一种基于情感分析的商品推荐系统,该系统能够分析购买者对商品的评价,从而获取用户对商品某些属性的态度。只要用户提供所需商品的品牌型号信息以及感兴趣的属性,系统就可以推荐出最受关注和好评的所需商品。 sentiment analysis is used widely in text processing, because it can reflect the attitude of the people. In this paper, a product recommendation system based on sentiment analysis is proposed. The system is able to analyze the evaluation of the purchase of goods, access to the user on the attitude of some of the proper- ties of the goods. So long as the user provide the brands and models of the goods which are needed and interest- ed, the system can be recommended to the user's most attention and praise users goods.
作者 郭丽 刘磊
出处 《中原工学院学报》 CAS 2014年第3期71-74,共4页 Journal of Zhongyuan University of Technology
基金 河南省科技厅基础与技术前沿项目(122300410048)
关键词 情感分析 向量空间模型 商品 属性 sentiment analysis vector space model goods property
  • 相关文献

参考文献8

  • 1王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1):1-20. 被引量:179
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 3Adomavicius G, Tuzhilin A. Personalization Technolo- gies: a Process-oriented Perspective[J]. Communications of the ACM, 2005, 48(10):83-90.
  • 4董振东,董强.《知网》语义词典HowNet.txt[EB/OL].[2013-05-01].http://www.keenage.com.
  • 5刘群,李素建.基于知网的词汇相似度计算[EB/OL]. http://www.keenage.com, 2010-12-15.
  • 6Peter D T. Similarity of Semantic Relations [J]. Compu- tational Linguistics Journal, 2006, 32(3): 379-416.
  • 7Peter D T. Mining the Web for Synonyms: PMI-IR Ver- sus LSA on TOEFL[C/OL]//Proceedings of the 12th European Conference on Maehin-learning. [2013 - 04 - 29]. http://cogprints, org/1796/5/ECML 2001. pdf.
  • 8刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435

二级参考文献143

  • 1李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 2Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 3Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 4梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 5Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 6Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 7Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 8Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 9Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 10Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217

共引文献976

同被引文献13

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部