期刊文献+

一种新的基于图模型的间歇过程故障监测方法 被引量:1

A novel fault detection method for batch process based on digraph model
下载PDF
导出
摘要 目前多元统计方法被广泛用于间歇过程故障监测并已经取得了比较好的效果。但是,统计模型的可解释性能比较差,很难直接利用操作人员积累的安全经验。为应对这些不足,提出了一种基于图模型的间歇过程故障监测方法。利用提出的定性建模方法,过程机理及操作人员的安全经验能够方便地表达。利用在线的过程变量数据和正向推理算法推断生产应处于的状态,利用安全知识及时地发现生产异常。当推断的结论与在线测得的结果矛盾或过程变量超过设定的安全限时,给出解释性输出。通过一个间歇反应案例,验证了提出的方法在模型的可解释性和利用安全经验方面的优势。 So far,the multivariate statistical methods have been widely used to perform fault detection for batch process,and they have shown some good performances. However,the interpretability of statistical model is not good,and it is difficult to directly use the safety experience of operators. In order to cope with these shortcomings,a fault detection method based on digraph model was proposed. By using the proposed qualitative modeling method,the process mechanism and safety experience of operators can be expressed easily. On-line data of process variables and forward reasoning algorithm were used to deduce the state of production process. The safety knowledge was used to find abnormal production state in time. When deduced conclusion was not consistent with measured process variable value or process variable value exceeds threshold,an explanation for this situation would be provided. By means of a batch reaction case,the advantages of proposed method on model interpretability and using safety experience were verified.
出处 《中国安全生产科学技术》 CAS CSCD 2014年第6期164-170,共7页 Journal of Safety Science and Technology
关键词 间歇过程 故障监测 定性推理 图模型 batch process fault detection qualitative reasoning digraph model
  • 相关文献

参考文献12

二级参考文献39

共引文献115

同被引文献17

  • 1魏利军,关磊,吴宗之.重大危险源安全监控系统运行模式分析与探讨[J].中国安全生产科学技术,2006,2(5):37-40. 被引量:21
  • 2VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 3Macgregor J F, Kourti T. Statistical process control of multivariate process[J]. Control Engineering Practice, 1995, 3(3): 403-414.
  • 4Geladi P, Kowalski B R. Partial least-squares regression: a tutorial[J]. Anal. Chem. Acta, 1986, 185: 1-17.
  • 5Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry[J]. International Journal of Adaptive Control and Signal Processing, 2005, 19(4): 213-246.
  • 6Qin S J, Mcavoy T J. Nonlinear PLS Modeling Using Neural Network[J]. Computers & Chemical Engineering, 1992, 16(4): 379-391.
  • 7Malthouse E C, Tamhane A C, Mah R S H. Non-linear partial least squares[J]. Computer and Chemical Engineering, 1997, 21(8): 875-890.
  • 8Scholkopf B, Smola A J. Learning with kernels - support vector machines, regularization, optimization and beyond[M]. Cambridge, MA: MIT Press 2002.
  • 9王桂增, 叶昊. 主元分析与偏最小二乘法[M]. 北京: 清华大学出版社, 2012.
  • 10Rosipal R. Kernel partial least squares for nonlinear regression and discrimination[J]. Neural Network World, 2003, 13: 291-300.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部