期刊文献+

基于新的非局部先验模型的Bayesian低剂量CT重建算法

Bayesian Reconstruction Algorithm for Low-dose CT Based on New Nonlocal Prior Model
下载PDF
导出
摘要 为了改善低剂量CT重建图像质量,在传统非局部先验的基础上,提出了一种基于投影对称性的改进非局部先验模型。基于该先验模型构造了一种贝叶斯(Bayesian)重建算法,并将其应用到低剂量CT投影数据降噪中,通过滤波反投影算法重建出图像。仿真实验结果表明,本文所提出的算法较基于传统先验模型的重建算法,能在去除噪声与保持边缘之间取得较好的平衡。 In order to improve the quality of low-dose CT reconstructed image, this study proposes a projection symmetry-based modified nonlocal prior model based on the traditional nonlocal prior model. Then, a Bayesian reconstruction algorithm is built combined with this prior model, and it is applied to the noise removal of the low-dose CT projection data. The reconstructed images are obtained by the filtered back-projection (FBP) algorithm. The results of simulated experiment show the proposed algorithm, compared with the algorithms based on the traditional priors, can achieve a superior balance between suppressing noise and preserving edges.
作者 姜盛杰
出处 《CT理论与应用研究(中英文)》 2014年第3期395-402,共8页 Computerized Tomography Theory and Applications
关键词 重建算法 低剂量CT 非局部先验模型 贝叶斯 reconstruction algorithm low-dose computed tomography nonlocal prior model Bayesian
  • 相关文献

参考文献8

  • 1Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessiveX-ray photon noise[J]. Medical Physics, 1998, 25(11): 2139-2147.
  • 2Demirkaya O. Reduction of noise and image artifacts in computed tomography by nonlinear filtration of the projection images[C]//International Society for Optics and Photonics, Medical Imaging 2001. 2001, 4322: 917-923.
  • 3Rivi6re PJL, Billmire DM. Reduction of noise-induced streak artifacts in X-ray computed tomography through spline-based penalized-likelihood sinogram smoothing[J]. IEEE Transactions on Medical Imaging, 2005, 24(1): 105-111.
  • 4Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Transactions on Medical Imaging, 2006, 25(10): 1272-1283.
  • 5Tian Z, Jia X, Yuan K, et al. I.ow-dose CT reconstruction via edge-preserving total variation regularization[J]. Physics in Medicine and Biology, 2011, 56(18): 5949.
  • 6ChenY, GaoD, NieC, et al. Bayesian statistical reconstruction for low-dose X-raycomputed tomography using an adaptive-weighting nonlocal prior[J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 495 500.
  • 7Chen Y, Ma J, FengQ, et al. Nonlocal prior Bayesian tomographic reconstruction[J]:Journal of Mathematical Imaging and Vision, 2008, 30(2): 133-46.
  • 8Zhang Y, Zhang J, Lu, H. Statistical sinogram smoothing for low-dose CT with segmentation-based adaptive filtering[J]. IEEE Transactions on Nuclear Science, 2010, 57(5) 2587-2598.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部