期刊文献+

Numerical Investigation of Heat Transfer Coefficient in a Low Speed 1.5-Stage Turbine

Numerical Investigation of Heat Transfer Coefficient in a Low Speed 1.5-Stage Turbine
原文传递
导出
摘要 The paper numerically investigated the heat transfer coefficients over the rotating blades in a 1.5-stage turbine. The hexahedral structured grids and k-ε turbulence model were applied in the simulation. A film hole with diameter of 0.004 m, angled 36°and 28° tangentially to the suction side and pressure side in streamwise respectively, was set in the middle span of the rotor blade. Simulations are done at three different rotating numbers of 0.0239, 0.0265 and 0.0280 with the blowing ratio varying from 0.5 to 2.0. The effects of mainstream Reynolds number and density ratio are also compared. Results show that increasing blowing ratio can increase the heat transfer coefficient ratio on the pressure side, but the rule is parabola on the suction side. Besides, increasing rotating number and Reynolds number is positive while increasing density ratio is negative to the heat transfer on both the pressure side and the suction side.
作者 LI Guoqing
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第4期332-337,共6页 热科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No 51106156)
关键词 film cooling heat transfer coefficient ROTATING TURBINE 传热系数比 数值研究 涡轮 低速 模拟应用 结构化网格 旋转叶片 湍流模型
  • 相关文献

参考文献13

  • 1R. J. Goldstein, Film Cooling, Advance in Heat Transfer, Academic Press, New York, 7 (1971) 321-379.
  • 2E. R. G. Eckert, Gas-to-Gas Film Cooling, Inzhenemo- Flzicheskii Zhumal, 19(3) (1970) 426-440.
  • 3J. C. Han, S. Dutta, and S. V. Ekkad, Gas Turbine Heat Transfer and Cooling Technology, Taylor & Francis, New York, Chap. 3, (2001) 87-163.
  • 4H. D. Ammari, N. Hay and D. Lampard, The Effect of Density Ratio on the Heat Transfer Coefficient from a Film Cooled Flat Plate, ASME Journal of Heat Transfer, vol. 125, pp. 494-502, (2003).
  • 5J. S. Kwak and J. C. Han, Heat Transfer Coefficients and Film-Cooling Effectiveness on a Gas Turbine Blade Tip, ASME Journal of Turbomachinery, vol. 112, pp. 444-450, (1990).
  • 6S. V. Ekkad, D. Zapata and J,C. Han, Heat Transfer Co- efficients Over a Flat Surface With Air and CO2 Injec- tion Through Compound Angle Holes Using a TransientLiquid Crystal Image Method, ASME Journal of Turbomachinery, vol. 119, pp. 580-586, (1997).
  • 7S. Baldauf, A. Schulz and S. Wittig, High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling, ASME Journal of Turboma- chinery, vo1.123, pp. 749-757, (2001).
  • 8V. K. Garg and Reza S. Abhari, Comparison of Predicted and Experimental Nusselt Number for a Film-cooled Ro- tating Blade, International Journal of Heat and Fluid Flow, vol.18, pp.452-460, (1997).
  • 9V. K. Garg, Heat Transfer on a Film-cooled Rotating Blade, International Journal of Heat and Fluid Flow, vol.21, pp. 134-145, (2000).
  • 10Z. Tao, Z. Zhao, S. Ding, G. Xu, B. Yang, H. Wu, Heat Transfer Coefficients of Film Cooling on a Rotating Tur-bine Blade Model--Part I: Effect of Blowing Ratio, ASME Journal of Turbomachinery, vol. 131, pp.041005- 1-12, (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部