期刊文献+

Experimental Study on Spark Ignition of Non-premixed Hydrogen Jets 被引量:1

Experimental Study on Spark Ignition of Non-premixed Hydrogen Jets
原文传递
导出
摘要 The leaks of pressurized hydrogen can be ignited if an ignition source is within a certain distance from the source of the leaks, and jet ftres or explosions may take place. In this paper, a high speed camera was used to investigate the ignition kernel development, ignition probability and flame propagation along the axis of hydrogen jets, which leaked from a 3-ram-internal-diameter nozzle and were ignited by an electric spark. Experimental results indicate that for successful ignition events, the ignition delay time increases with an increase of the distance between the nozzle and the electrode. Ignitable zone of the hydrogen jets is underestimated if using the predicted hydrogen concentration along the jets centerline. The average rate of downstream flame decreases but that of the upstream flame increases with the electrode going far from the nozzle.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2014年第4期354-358,共5页 热科学学报(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities National Natural Science Foundation of China(No.50806071)and(No.51276177)
关键词 HYDROGEN Spark ignition Ignition kernel Ignition probability Flame propagation 火花点火 喷气机 氢气 实验 喷嘴电极 预混 火焰传播 点火延迟时间
  • 相关文献

参考文献19

  • 1O. O. Akindele, D. Bradley. Spark ignition of turbulent gases. Combust Flame 1982, 47: 129-155.
  • 2A. D. Birch, D.R.Brown, M.G.Dodson. Ignition probabil- ities in turbulent mixing flows. Eighteenth Symposium (International) on Combustion. Pittsburgh: The Combus- tion Institute 1981: 1755-1780.
  • 3M. T. E. Smith, A. D. Birch, D. R. Brown, et al. Studies of ignition and flame propagation in turbulent jets of nat- ural gas, propane and a gas with a high hydrogen content. Twenty-first Symposium (International) on Combustion. Pittsburgh: The Combustion Institute 1986: 1403-1408.
  • 4D. R. Ballal, A. H. Lefebvre. The influence of spark dis- charge characteristics on minimum ignition energy in flowing gases. Combust Flame 1975, 24: 99-108.
  • 5M. Kono, K. Hatori, K. Iinuma. Investigation on ignition ability of composite sparks in flowing mixtures. Twenti- eth Symposium (International) on Combustion. Pittsburgh The Combustion Institute 1984: 133-140.
  • 6V. Subramanian, PascaleDomingo, L.Vervisch. Turbulent tame spreading mechanisms after spark ignition. AIP Conf Proc 2009, Ann Arbor, Michigan, 1190: 68-89.
  • 7R. Benintendi. Turbulent jet modelling for hazardous area classification. J Loss Prevent Proc 2010, 23: 373-378.
  • 8S. P. M. Bane, J. L. Ziegler, P. A. Boettcher, et al. Ex- perimental Investigation of Spark Ignition Energy in Kerosene, Hexane, and Hydrogen, J Loss Prevent Proc 2013, 26: 290-294.
  • 9C. F. Kaminshi, J. Hult, M. Alden, et al. Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulation. P. Combust. Inst 2000, 28: 399-405.
  • 10S. F. Ahmed, E. Mastorakos. Spark ignition of lifted tur- bulent jet flames. Combust Flame 2006, 146:215-231.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部