期刊文献+

分布式预测函数控制优化算法 被引量:3

Distributed Optimization Algorithm for Predictive Functional Control
下载PDF
导出
摘要 为解决复杂大规模预测控制系统在线计算复杂的问题,提出了一种基于纳什最优的分布式预测函数控制优化算法。给出了具体的计算过程,同时分析了这种算法的收敛条件。该算法结合预测函数控制输入结构化、计算方便和分布式控制简便等优点,不但解决了控制输入不明的缺点,并且减少了优化变量,能够很好地满足系统的全局稳定性。仿真结果验证了所提出的分布式预测函数控制算法的有效性。 To solve the problem of complex online calculation in large scale predictive control system, the optimization algorithm based on Nash optimality for distributed predictive functional control is proposed. The concrete calculation procedures are given, and the convergence conditions of the algorithm are analyzed. This algorithm combines the features and advantages of structured predictive function control input, easy calculation and easier distributed control; while the demerit of unclear control input is solved, and the number of optimized variables is reduced, this satisfies global stability of the system. The results of simulation verify the effectiveness of the algorithm proposed.
出处 《自动化仪表》 CAS 北大核心 2014年第7期68-73,共6页 Process Automation Instrumentation
基金 国家自然科学基金青年科学基金资助项目(编号:61304095) 江苏省基础研究计划(自然科学基金)青年基金资助项目(编号:BK20130317) 江苏省研究生培养创新工程基金资助项目(编号:CXLX12_0807)
关键词 分布式控制 预测函数控制 纳什最优 多智能体系统 收敛 Distributed control Predictive functional control Nash optimality Multi-agent system Convergence
  • 相关文献

参考文献15

  • 1Alessio A, Barcelli D, Bemporad A. Decentralized model predictive control of dynamically coupled linear systems [ J]. Journal of Process Control,2011 (21) :705-714.
  • 2Motee N,Jadbabaie A. Optimal control of spatially distributed systems [ J ]. IEEE Transactions on Automatic Control ( S0018-9286 ), 2008, 53(7) :1616-1629.
  • 3Mehmet M, Francis J D. Distributed model predictive control of an experimental four-tank system [ J ]. Journal of Process Control, 2007(17) :297-308.
  • 4Scheu H, Wolfgang M. Sensitivity-based coordination in distributed model predictive control [ J ]. Journal of Process Control,2011 (21) : 715-728.
  • 5杜晓宁,席裕庚,李少远.分布式预测控制优化算法[J].控制理论与应用,2002,19(5):793-796. 被引量:27
  • 6蒋存波,张淑祯,陈俊达,苏柱宾.一种基于时域响应的预测控制算法的研究[J].自动化仪表,2012,33(1):59-62. 被引量:3
  • 7张燕,邓嫔,张佳会,杨鹏.微分改进RBF网络线性预测控制算法的研究[J].自动化仪表,2012,33(5):53-56. 被引量:1
  • 8宁璀,张泉灵,苏宏业.多变量一阶加纯滞后系统的预测函数控制[J].信息与控制,2007,36(6):702-707. 被引量:16
  • 9Christofides P,Scattolini R, David M, et al. Distributed model predictive control:a tutorial review and future research directions [ J ]. Computers and Chemical Engineering,2013(51 ) :21-41.
  • 10Zhang R, Wang S. Support vector machine based predictive functional control design for output temperature of coking furnace[ J ]. Journal of Process Control,2008,18 (5) :439 -445.

二级参考文献41

  • 1吴建国,张培建.基于预测函数控制的纯滞后系统的研究[J].自动化仪表,2004,25(11):8-10. 被引量:6
  • 2方益民,徐保国.RBF神经网络在压力校验台数据非线性校正中的应用[J].自动化仪表,2005,26(10):28-29. 被引量:2
  • 3冯冬青,徐学红,费敏锐.神经网络广义预测控制在锅炉燃烧系统中的应用[J].自动化仪表,2006,27(6):18-21. 被引量:14
  • 4张玉珊,崔金玲.数据采集系统中的数字滤波方法研究[J].河南机电高等专科学校学报,2007,15(3):23-25. 被引量:15
  • 5Yuan S, Prerz R A. Model predictive control of supply air temperature and outside air intake rate of a VAV air-handling unit[J]. ASHRAE Transactions, 2006, 112(2): 145-161.
  • 6Yuan S, Prerz R A. Multiple-zone ventilation and temperature control of a single-duct VAV system using model predictive strategy[J]. Energy and Building, 2006, 38(10): 1248-1261.
  • 7Roy N, Das S K, Basu K, et al. Enhancing availability of grid computational services to ubiquitous computing applicatlons[J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(7): 953-967.
  • 8Lewis E Riccati equation solution to the minimum time output control problem[J]. IEEE Transactions on Automatic Control, 1981, AC-26(3): 763-766.
  • 9Maciejowski J M. Predictive control with constraints[M]. Englewood Cliffs, N J, USA: Prentice Hall, 2002.
  • 10Miguel A B,Ton J J, Van D B. Predictive control based on neural network model with I/O feed back linearization [ J ]. International Journal of Control, 1999,72 ( 17 ) : 1358 - 1554.

共引文献47

同被引文献31

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部