期刊文献+

基于时-频结合的显著性区域检测 被引量:1

Saliency Detection Based on Integration of Time-frequency Domains
下载PDF
导出
摘要 模拟人的视觉系统对图像中的显著性区域进行检测是计算机视觉领域重要研究内容之一。本文提出了一种新颖的基于时-频结合的显著性区域检测算法,通过结合显著目标在时域的局部对比度和在频域的全局频谱特性,从而有效增强显著目标与背景区域的区分度。为提高时域局部对比度的刻画能力,反应人类视觉"颜色双对立"理论的多通道特性得到了充分考虑。此外,在频域利用奇异值分解(SVD)方法对幅度谱系数矩阵做低秩逼近,通过自适应控制逼近矩阵秩的大小,实现去除高频信息与杂波的目的,而后仅利用相位信息,得到基于频域全局频谱特性的显著图像。在公开数据库上的性能测试结果表明,同目前代表性显著性检测技术相比,本文提出的基于时-频结合的显著性区域检测算法具有更优的检测性能。 Detecting visually salient regions of an image by simulating the visual nervous system of mankind has become one of key issues in the community of computer vision.In this paper,we proposed a novel saliency detection method based on the integration of time-frequency domains.By taking advantage of the local contrast cue from the time domain and the global frequency spectrum cue from the frequency domain,the discrimination between the salient obj ect and background can be effectively enhanced.To boost the characterization of local contrasts in the time domain,multi-channel properties in accordance with the human visual“color double-opponent”system were fully considered.In addition,in the frequency domain we applied SVD to provide a low rank approximation to the magnitude spectrum coefficient matrix and by adaptively tuning the rank of the approximation matrix after SVD,some clutter like noises and high frequency information can be eliminated,then the saliency map in the frequency domain can be obtained only by using the phase information.Compared with some typical saliency detection methods,the proposed algorithm shows competitive performance on several publicly available datasets.
出处 《铁道学报》 EI CAS CSCD 北大核心 2014年第7期62-69,共8页 Journal of the China Railway Society
基金 国家自然科学基金(61172129) 教育部新世纪优秀人才计划(NCET-13-0661) 中央高校基本科研业务费(2012JBZ012) 教育部创新团队发展计划(PCIRT201206) 北京市自然科学基金(4112043)
关键词 显著性检测 视觉注意力 目标检测 时-频分析 saliency detection visual attention model obj ect detection time-frequency analysis
  • 相关文献

参考文献20

  • 1OSBERGER W M. Visual Attention Model:United States, 6,670,963 B2[P]. 2003-12-30.
  • 2FANG Yu-ming, CHEN Zhen-zhong, LIN Wei-si, et al. Saliency Detection in the Compressed Domain for Adaptive Image Retargeting[J3. IEEE Transaction on Image Pro- cessing, 2012, 21(9):3888-3901.
  • 3HOU Xiao-di, HAREL J, KOCH C. Image Signature: Highlighting Sparse Salient Region[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2012, 34 (1) : 194-201.
  • 4丁正虎,余映,王斌,张立明.选择性视觉注意机制下的多光谱图像舰船检测[J].计算机辅助设计与图形学学报,2011,23(3):419-425. 被引量:18
  • 5ITTI L, KOCH C, NIEBUR E. A Model of Saliency- Based Visual Attention for Rapid Scene Analysis [J]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 1998, 20(11):1254-1259.
  • 6WALTHER D, KOCH C. Modeling Attention to Salient Proto-objects[J]. Neural Networks, 2006, 19(9): 1395- 1407.
  • 7HOU Xiao-di, ZHANG Li-qing. Saliency Detection: A Spectral Residual Approach [C]//Proceedings of IEEE Con/erence on Computer Vision and Pattern Recognition. New York: IEEE Press, 2007:1-8.
  • 8余映,王斌,张立明.基于脉冲余弦变换的选择性视觉注意模型[J].模式识别与人工智能,2010,23(5):616-623. 被引量:7
  • 9LIU F, GLEICHER M. Region Enhanced Scale-Invariant Saliency Detection[C]//Proceedings of IEEE International Conference on Multimedia and Expo:New York; IEEE Press, 2006:1477-1480.
  • 10GUO Chen-lei, MA Qi, ZHANG Li-ming. Spatio-temporal Saliency Detection Using Phase Spectrum of Quaterni- on Fourier Transform[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2008 : 1-8.

二级参考文献35

  • 1Treisman A M, Gelade G. A Feature-Integration Theory of Attention. Cognitive Psychology, 1980, 12 ( 1 ) : 97 - 136.
  • 2Koch C, Ullman S. Shifts in Selective Visual Attention : Towards the Underlying Neural Circuitry. Human Neurobiology, 1985, 4 ( 4 ) : 219 - 227.
  • 3Desimone R, Duncan J. Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscienee, 1995, 18:193-222.
  • 4Crick F, Koch C. Constraints on Cortical and Thalamic Projections: the No-Strong-Loops Hypothesis. Nature, 1998, 391 ( 6664 ) : 245 - 250.
  • 5Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20( 11 ) : 1254 - 1259.
  • 6Bruce N D B, Tsotsos J K. Saliency, Attention, and Visual Search : An Information Theoretic Approach. Journal of Vision, 2009, 9 (3) : 1 -24.
  • 7Guo Chenlei, Zhang Liming. A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Trans on Image Processing, 2010, 19 ( 1 ) : 185 - 198.
  • 8Li Zhaoping. A Saliency Map in Primary Visual Cortex. Trends in Cognitive Sciences, 2002, 6( 1 ) : 9 - 16.
  • 9Li Zhaoping. Theoretical Understanding of the Early Visual Processes by Data Compression and Data Selection. Network: Computation in Neural Systems, 2006, 17(4) : 301 -334.
  • 10Gonzalez R C, Woods R E. Digital Image Processing. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2002.

共引文献21

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部