期刊文献+

一类带有p-Laplacian算子的分数阶差分方程的多重解 被引量:1

Multiple solutions for a class of fractional difference equations involving the p-Laplacian operator
下载PDF
导出
摘要 研究了一类带有p-Laplacian算子并依赖于正参数λ的分数阶差分方程的边值问题.利用变分法和带有强制条件的临界点定理,得到了当正参数λ属于某个确定区间时该边值问题至少有3个解的结果. We studied a class of fractional difference equations with boundary value conditions involving the p-Laplacian operator and depending on a positive real parameterλ.By using variational methods and the critical points theorem with coercive condition,the existence theorem of at least three solutions for this fractional boundary value problem is obtained when the positive parameterλbelongs to some determined interval.
作者 李宝玲 葛琦
出处 《延边大学学报(自然科学版)》 CAS 2014年第2期104-108,共5页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(11161049)
关键词 P-LAPLACIAN算子 变分法 临界点定理 多重解 p-Laplacian operator variational methods the critical points theorem multiple solutions
  • 相关文献

参考文献1

二级参考文献15

  • 1F. JARAD, D. BALEANU. Discrete variational principles for Lagrangians linear invelocities. Rep. Math. Phys., 2007, 59(1): 33-43.
  • 2F. M. ATICI, P. W. ELOE. A transform method in discrete fractional calculus. Int. J. Difference Equ., 2007, 2(2): 165-176.
  • 3C. S. GOODRICH. Solutions to a discrete right-focal fractional boundary value problem. Int. J. Difference Equ., 2010, 5(2): 195-216.
  • 4F. M. ATICI, P. W. ELOE. Two-point boundary value problems for finite fractional difference equations. J. Difference Equ. Appl., 2011,17(4): 445-456.
  • 5C. S. GOODRICH. On discrete sequential fractional boundary value problems. J. Math. Anal. Appl., 2012, 385(1): 111-124.
  • 6C. S. GOODRICH. Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions. Comput. Math. Appl., 2011, 61(2): 191-202 .
  • 7C. S. GOODRICH. Continuity of solutions to discrete fractional initial value problems. Comput. Math. Appl., 2010, 59(11): 3489-3499.
  • 8Zuoshi XIE, Yuanfeng JIN, Chengmin HOU. Multiple solutions for a fractional difference boundary value problem via variational approach. Abstr, Appl. Anal., 2012, Art. ID 143914, 16 pp.
  • 9F. M. ATICI, P. W. ELOE. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., 2009, 3: 1-12.
  • 10F. M. ATIC, S. SENGUL. Modeling with fractional difference equations. J. Math. Anal. Appl., 2010, 369(1): 1-9.

共引文献4

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部