期刊文献+

基于MCMC的分位回归AR-ARCH模型的贝叶斯分析

Bayesian analysis of the quantile AR-ARCH models based on MCMC algorithm
下载PDF
导出
摘要 针对时间序列分布特征的高峰厚尾性,提出了一类分位回归ARCH模型.在贝叶斯理论框架下,通过选择适当的先验分布,并基于非对称Laplace分布构建模型的似然函数,实现了模型的贝叶斯推断.仿真试验和分析表明,该分位回归ARCH模型可全面刻画时间序列的非对称性和高峰厚尾性. Since many time series with asymmetric and heavier tails,we adapt the quantile regression ideas to the ARCH models.In the framework of Bayesian theory,we employ the proper prior,the likelihood function based on the asymmetric Laplace distribution was employed irrespective of the original distribution of the data,and derive the posterior distribution of the model parameters.The simulation result shows that the quantile ARCH models are effective to capture the diversity of time series distribution.
出处 《延边大学学报(自然科学版)》 CAS 2014年第2期138-141,共4页 Journal of Yanbian University(Natural Science Edition)
基金 国家自然科学基金资助项目(41301421) 教育部人文社会科学研究项目(13YJC790203)
关键词 贝叶斯 分位数 AR-ARCH模型 仿真 Bayesian quantile AR-ARCH models simulation
  • 相关文献

参考文献7

  • 1Koenker R,Zhao Q.L-estimation for linear heteroscedastic models[J].Journal of Nonparametric Statistics,1994,3:223-235.
  • 2Koenker R,Zhao Q.Conditional quantile estimation and inference for ARCH models[J].Econometric Theory,1996,12:793-813.
  • 3Xiao Z,Koenker R.Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models[J].Journal of the American Statistical Association,2009,104(488):1696-1712.
  • 4Chen C W S,Gerlach R,Wei D C M.Bayesian causal effects in quantiles:accounting for heteroscedasticity[J].Computational Statistics&Data Analysis,2009,53:1993-2007.
  • 5王新宇,宋学锋.间接TARCH-CAViaR模型及其MCMC参数估计与应用[J].系统工程理论与实践,2008,28(9):46-51. 被引量:21
  • 6曾惠芳,朱慧明,李素芳,虞克明.基于MH算法的贝叶斯分位自回归模型[J].湖南大学学报(自然科学版),2010,37(2):88-92. 被引量:13
  • 7朱慧明,王彦红,曾惠芳.基于逆跳MCMC的贝叶斯分位自回归模型研究[J].统计与信息论坛,2010,25(1):9-14. 被引量:6

二级参考文献35

  • 1杨国忠,刘再明.一类带跳的线性回归模型[J].湖南大学学报(自然科学版),2005,32(3):119-123. 被引量:2
  • 2Koenker R, Xiao Z. Quantile autoregression[J]. Journal of the American Statistical Association,2006, 101(3): 980-990.
  • 3Sisson S A. Trans - dimensional Markov chains: a decade of progress and future perspectives[J]. Journal of the American Statistical Association,2005, 100(3) : 1077 - 1089.
  • 4Green P J. Reversible jump Markov chain monte carlo computation and bayesian model determination[J ]. Biometrika, 1995, 82(4) :711 - 732.
  • 5Yu K. Quantile regression using RJMCMC algorithm[J]. Computational Statistics & Data Analysis, 2002,40(2) :303 - 315.
  • 6Campbell E P. Bayesian selection of threshold autoregressive models[J ]. Journal of Time Series Analysis, 2004, 25(4) :467 - 482.
  • 7Lunn D J, Best N, Whittaker J C. Generic reversible jump MCMC using graphical models[J ]. Statistics and Computing, 2008, DOI : 10. 1007/s1 1222 - 008 - 9100 - 0.
  • 8Lopes H F, Salazar E. Bayesian model uncertainty in smooth transition autoregressions[J]. Journal of Time Series Analysis, 2006, 27(1) :99 - 117.
  • 9Ehlers R S, Brooks S P. Adaptive proposal construction for reversible jump MCMC[J ]. Scandinavian Journal of Statistics, 2008, 35(4) :677- 690.
  • 10Brooks S P, Giudici P, Roberts G O. Efficient construction of reversible jump MCMC protosal distributions- discussion[J]. Journal of the Royal Statistical Society: Series B, Statistical Methodology. 2003, 65(1) : 47- 48.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部