期刊文献+

基于近似对冲跳跃风险的美式看跌期权定价及数值解法研究 被引量:1

The Prcing of American Put Options and Numerical Solution Based on Approximating Hedge Jump Risk
下载PDF
导出
摘要 考虑了基于近似对冲跳跃风险的美式看跌期权定价问题。首先,运用近似对冲跳跃风险、广义It公式及无套利原理,得到了跳-扩散过程下的期权定价模型及期权价格所满足的偏微分方程。然后建立了美式看跌期权定价模型的隐式差分近似格式,并且证明了该差分格式具有的相容性、适定性、稳定性和收敛性。最后,数值实验表明,用本文方法为跳-扩散模型中的美式期权定价是可行的和有效的。 In this paper,the pricing for American put option is considered based on approximating hedge jump risk. Firstly,the options pricing model and the partial differential equation of the options pricing model are derived in the jump-diffusion process,by applying the generalized It formula and no-arbitrage principle,based on approximating hedge jump risk. The approximate implicit difference scheme of American put option pricing model is developed,and consistency,well-posedness,stability and convergence of the difference scheme are also proved in this paper. Lastly,the numerical experiments show that this method is an effective and feasible way for pricing American options in jump-diffusion model.
出处 《运筹与管理》 CSSCI CSCD 北大核心 2014年第3期226-233,共8页 Operations Research and Management Science
基金 国家自然科学基金资助项目(11171221) 上海市一流学科(系统科学)资助项目(XTKX2012)
关键词 期权定价 美式期权 数值方法 稳定性分析 收敛性分析 option pricing american options numerical method stability analysis convergence analysis
  • 相关文献

参考文献22

  • 1Black F, Scholes M. The pricing of options and corporate liabilities ['J]. Journal of Political Economy, 1973, 81 (3) : 637-655.
  • 2Kou S G. A Jump-diffusion model for option pricing[ J]. Management Science, 2002, 48(8) : 1086-1101.
  • 3Merton R C. Option pricing when underlying stock returns are discontinuous [ J]. Journal of Financial Economics, 1976, 3 (1-2) : 125-144.
  • 4Jarrow R A, Rosenfeld E R. Jump risks and the intertemporal capital asset pricing model[ J]. Journal of Business, 1984, 57 (3) : 337-351.
  • 5Cox J C, Ross S A. The pricing of options for jump processes[ J]. University of Pennsylvania: Rodney L. White Center Working Paper, 1975. -2-75.
  • 6Bardhan I, Chao X. Martingale analysis for assets with discontinuous returns[ J]. Mathematics of Operations Research, 1995, 20(1) : 243-256.
  • 7Aase K K. Contingent claim valuation when the security price is a combination of an Ito process and a random point process [J]. Stochastic Processes and their Applications, 1988, 28(2) : 185-220.
  • 8Scott L O. Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: applications of Fourier inversion method [ J ]. Mathematical Finance, 1997,7 (4) : 413- 426.
  • 9Gukhal C R. Analytical valuation of american options on jump-diffusion processes[ J]. Mathematical Finance, 2001, 11 (1) : 97-115.
  • 10Chockalingam A, Muthuraman K. Pricing american options when assets prices jump[ J]. Operation Research Letters, 2010, 38(2) : 82-86.

二级参考文献40

共引文献39

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部