期刊文献+

均值控制图法在泵站压力管道损伤识别中的应用 被引量:1

Application of Mean Control Chart Method in the Damage Identification of Pressure Pipe of Pump Station
下载PDF
导出
摘要 针对高扬程泵站压力管道由于流激振动引起的结构损伤问题,基于统计模式理论,提出了采用均值控制图识别压力管道损伤的方法。首先通过获取正常状态和待识别状态下实测数据的响应信息,构建损伤诊断的系统模型,对大量数据信息进行统计计算,然后提取特征值,优化特征向量,最后采用均值控制图法对压力管道损伤部位进行识别。实例分析结果表明,基于统计模式识别的均值控制图法,可以直观精确地对压力管道是否存在损伤做出识别,因此可以作为工程中大型泵站压力管道损伤识别的重要方法。 The pressure pipe of high-lift pump station can have structural damages due to flow-induced vibration,and the mean control chart method based on the statistical pattern theory was proposed to identify the damage.First,the response information of the measured data was obtained under the normal and to-be-detected conditions,which can be used to develop the system model for damage diagnosis.Then,statistical calculations were performed on numerous data information to extract the eigenvalue and optimize the eigenvector.Finally,the mean control chart method was used to identify the damage in the pressure pipe of the pump station.The results showed that the mean control chart method can identify any damage in the pressure pipe intuitively and accurately,and therefore it can be used as an important method for damage identification of pressure pipe of pump station.
出处 《南水北调与水利科技》 CAS CSCD 北大核心 2014年第3期77-80,共4页 South-to-North Water Transfers and Water Science & Technology
基金 国家自然科学基金资助项目(51279064 31360204) 华北水利水电大学高层次人才科研启动计划(201069)
关键词 统计模式 系统建模 数值模拟 均值控制图 损伤识别 Statistical pattern system model numerical simulation mean control chart method damage identification
  • 相关文献

参考文献10

二级参考文献24

  • 1严红平,潘春洪.模式识别简述[J].自动化博览,2006,23(1):22-26. 被引量:15
  • 2Brownjohn J M W,Moyo P,Omenzetter P,et al.Lessons from monitoring the performance of highway bridge[J].Structural Control and Health Monitoring,2005,12(3/4):227-244.
  • 3Farrar C R,Doebling S W,Nix D A.Vibration-based structural damage identification[J].Philosophical Transactions of the Royal Society of London:Series A,2001,359(1778):131-149.
  • 4Sohn H,Farrar C R.Damage diagnosis using time series analysis of vibration signals[J].Journal of Smart Materials and Structures,2001,10(3):446-451.
  • 5Lynch J P,Sundararajan A,Law K H,et al.Embedment of structural monitoring algorithms in a wireless sensing unit[J].Structural Engineering and Mechanics,2003,15(3):285-297.
  • 6Johnson E A,Lam H F,Katafygiotis L S,et al.A benchmark problem for structural health monitoring and damage detection[C]//Structural Control for Civil and Infrastructure Engineering.Singapore,2001:317-324.
  • 7Dyke S J,Bernal D,Beck J L,et al.An experimental benchmark problem in structural health monitoring[C]//Proceedings of the 3rd International Workshop on Structural Health Monitoring.Stanford,CA,USA,2001:219-229.
  • 8Dyke S J,Bernal D,Beck J L,et al.Phase II experimental structural health monitoring Benchmark problem[C]//Proceedings of the 16th ASCE Engineering Mechanics Conference.Washington DC,USA,2003:455-461.
  • 9WITT T.Testing for Correlations in Measurements[J].Advanced Mathematical and Computational Tools in Metrology,2000,Ⅳ:273-288.
  • 10ZHANG N F.Calculation of the uncertainty of the mean of autocorrelated measurements[J].Metrology,2006,43(4):276-281.

共引文献2332

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部