期刊文献+

基于领域覆盖算法的音乐情感识别 被引量:1

Music Emotion Recognition Based on Neighborhood Covering Algorithm
下载PDF
导出
摘要 音乐中具备很多情感的信息。文中通过分析音乐特征并用领域覆盖算法对音乐情感分类进行研究。音乐情感分类主要包括两个阶段:特征提取和分类。首先,通过Matlab语言提取音乐的特征,将提取到的特征值构建训练样本,然后使用训练样本训练领域覆盖算法分类器,得到音乐情感分类器,从而实现音乐的情感自动分类。文中借鉴Weiner、Graham的情感分类方法,将音乐分为开心和悲伤两类,并尝试用多种不同的音乐特征组合训练领域覆盖分类器,分析基于领域覆盖算法的音乐情感识别效果。 Music is strongly associated with emotions. In this paper,neighborhood covering algorithm is used to analyze musical genre so that music can be classified into different categories. Musical genre classification task falls into two major stages:feature extraction and classification. First of all,Matlab is used to extract the characteristics of the music,the characteristic values are applied to construct the training sample,then adopt the training sample to train the neighborhood covering algorithm classifier,obtaining the music emotion classi-fier and realizing the emotional automatic classification of music. According to emotion classification method of Weiner and Graham,di-vide the Chinese popular music into two categories:happy and sad,then try to use different music feature combinations to train neighbor-hood covering algorithm classifier as a method for music emotion recognition.
出处 《计算机技术与发展》 2014年第7期72-76,共5页 Computer Technology and Development
基金 国家级大学生创新创业训练计划项目专项经费(cxcy2012066)
关键词 领域覆盖算法 音乐情感识别 音乐特征提取 情感分类 neighborhood coverage algorithm music emotion recognition music feature extraction emotion classification
  • 相关文献

参考文献4

二级参考文献14

  • 1李敏,费耀平.基于置乱变换的多重数字水印盲算法[J].计算机工程,2006,32(16):122-124. 被引量:6
  • 2张铃,张钹.多层反馈神经网络的FP学习和综合算法[J].软件学报,1997,8(4):252-258. 被引量:24
  • 3龙清,隋品波.一种基于复倒谱变换自同步音频水印算法[C].中国:全国计算机安全学术交流会,2009:166-172.
  • 4Laurier C,Grivolla J,Herrera P.Multimodal Music Mood Classi-fication Using Audio and Lyrics[C]//Proc.of the 7th International Conference on Machine Learning and Applications.San Diego,USA:[s.n.],2008:688-693.
  • 5Chu Weirong,Tsai R T,Wu Ying Sian,et al.A Lyrics and Audio Mandopop Dataset for Music Mood Estimation[C]//Proc.of International Conference on Technologies and Applications of Artificial Intelligence Dataset Compilation,System Construction,and Testing.Washington D.C.,USA:IEEE Computer Society,2010:53-59.
  • 6Yang Dan,Lee W S.Music Emotion Identification from Lyr-ics[C]//Proc.of the 11th IEEE International Symposium on Multimedia.Washington D.C.,USA:IEEE Computer Society,2009:624-629.
  • 7Hu Xiao,Downie J S.Improving Mood Classification in Music Digital Libraries by Combining Lyrics and Audio[C]//Proc.of the 10th Annual Joint Conference on Digital Libraries.New York,USA:ACM Press,2010:159-168.
  • 8Zeng Zhihong,Pantic M,Roisman G I,et al.A Survey of Affect Recognition Methods:Audio,Visual,and Spontaneous Expressions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,31(1):39-58.
  • 9Xiao Zhongzhe,Dellandrea E,Dou Weibei,et al.What is the Best Segment Duration for Music Mood Analysis·[C]//Proc.of International Workshop on Content-based Multimedia Indexing.[S.1.]:IEEE Press,2008:17-24.
  • 10Bischoff K,Firan C,Paiu R,et al.Music Mood and Theme Classification——A Hybrid Approach[C]//Proc.of the 10th International Conference on Music Information Retrieval.[S.1.]:IEEE Press,2009:657-661.

共引文献141

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部