期刊文献+

科研基金数据加工方法研究 被引量:1

Research on Processing Method of Scientific Research Fund Data
下载PDF
导出
摘要 分析原始基金数据的特点,依据知识发现的基本原理,对科研基金数据进行拆分、清洗、分类与甄别,建立起基金分类体系,再利用该体系对科研基金数据进行标注。通过"聚类-完善分类体系-标注"的循环,完成对科研基金数据的加工。 The paper analyzes the characteristics of original scientific research fund data, according to the basic principles of know edge discovery, it carries out partitioning, cleaning, classification and screening on scientific research fund data, constructs fund classification system, then uses the system to mark the scientific research fund data. Through " clustering - classification system perfection - marking " cycle to complete the scientific research fund data processing.
作者 赵胜钢 陈颖
出处 《医学信息学杂志》 CAS 2014年第6期38-43,共6页 Journal of Medical Informatics
关键词 知识发现 数据挖掘 聚类分析 Levenshtein Distance算法 Knowledge discovery Text mining Data clustering Levenshtein Distance algorithm
  • 相关文献

参考文献5

二级参考文献22

  • 1章成志.基于多层特征的字符串相似度计算模型[J].情报学报,2005,24(6):696-701. 被引量:40
  • 2[1]Hang T. BIRCH. An efficient data clustering method for very large database. In: Proc of the ACM SIGMOD International Conf. on Management of Data Montreal: ACM press, 1996,83 ~ 94.
  • 3[2]Udipto Guha, Rastogi R, Shim K. CURE: A clustering algorithm for large databases. Technical report, Bell Laboratories, Mucray Hill, 1997,67 ~ 78,1998,73 ~ 84.
  • 4[3]Martin Ester, Hans- Peter Kriegel, Jorg Sander, Xiaowei Xu. A desitybased algorithm for Discovery clusters in large spatial databs e with noise.In Proc. Of 2th International Conference on knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996.
  • 5[4]Gehrke J,Agrawal R,Gunopulos D,Raghavan P.Automatic Subspace Glustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD, 1998,72(2) :94 ~ 105.
  • 6[5]Christopher J., Philip K., Systems for Knowledge Discovery in Databases.IEEE Trans. On Knowledge and Data Engineering. 1993,5 (6) :903 ~ 913.
  • 7[6]OPERSKI K., Han J., Adhikary J., Mining Knowledge in geographic data. In Comm. ACM 1997.
  • 8[7]Fayyad U., Haussler D., Mining Scientific Data, Communication of the ACM, 1996,39(11).
  • 9[8]Inmon W. ,Building the Data Warehouse. Boston:QED Technical Publishing Croup, 1992,163 ~ 312.
  • 10[9]Hongjun Lu, Hiroshi Motoda, Huan Liu, KDD: Techniques and Application. 1997,3 ~ 12.

共引文献88

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部