期刊文献+

基于动态时间窗口的突发监测研究 被引量:3

Research on Burst Detection Based on the Dynamic Time Window
下载PDF
导出
摘要 针对Kleinberg突发监测算法中固定全局概率的缺陷,在动态时间窗口内计算突发词的基础概率,利用基于动态时间窗口的Kleinberg突发监测算法计算词的突发权重。结果表明利用环境概率计算得出的突发曲线更为精细,可识别出全局概率无法识别的较小的突发。 Aiming at the deficiency of fixed global probability of Kleinberg burst detection algorithm, the paper calculates the basis probability of burst topics in a dynamic time window, then calculates the burst weight using Kleinberg burst detection algorithm based on dynamic time window. The result shows that the burst curve calculated by environmental probability is more detailed, the smaller burst can be detected which global probability couldn't detect.
出处 《医学信息学杂志》 CAS 2014年第6期44-48,共5页 Journal of Medical Informatics
基金 国家科技支撑计划课题"基于STKOS的科技监测应用示范"(项目编号:2011BAH10B06-02) 中央公益性科研院所基本科研业务费课题"基于改进Kleinberg算法的突发监测研究"(项目编号:12R0117)
关键词 Kleinberg突发监测算法 基础概率 动态时间窗口 Kleinberg burst detection algorithm Basis probability Dynamic time window
  • 相关文献

参考文献15

  • 1Kleinberg J. Bursty and Hierarchical Structure in Streams[J].DATA MINING AND KNOWLEDGE DISCOVERY,2003,(04):373-397.
  • 2Toshiaki F. Identification of Bursts in a Document Stream[A].Italy,2004.
  • 3Mane K K. Mapping Topics and Topic Bursts in PNAS[J].Proceedings of the National Academy of Sciences,2004,(suppl_ 1):5287-5290.
  • 4Fung G P C,Yu J X,Yu P S. Parameter Free Bursty Events Detection in Text Streams[A].2005.181-192.
  • 5He Q,Chang K,Lim E P. Analyzing Feature Trajectories for Event Detection[A].New York,2007.207-214.
  • 6Lappas T,Arai B,Platakis M. On Burstiness-aware Search for Document Sequences[A].New York,2009.477-486.
  • 7樊锴.高效率事件挖掘技术研究及其验证系统实现[M]北京:北京大学出版社,2011.
  • 8Berndt D,Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series[A].Seattle,Washington,1994.359-370.
  • 9翁颖钧,朱仲英.基于动态时间弯曲的时序数据聚类算法的研究[J].计算机仿真,2004,21(3):37-40. 被引量:31
  • 10Pavlidis T,Horwitz S L. Segmentation of Plane Curves[J].IEEE Transactions on Computers,1974,(08):860-870.

二级参考文献4

  • 1[1]G Das,K Lin,H Mannila,G Renganathan & P Smyth.Rule discovery form time series[C].Proceedings of the 4rd International Conference of Knowledge Discovery and Data Mining,AAAI Press:16-22.
  • 2[2]E Keogh & M Pazzani.An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback[C].Proceedings of the 4rd International Conference of Knowledge Discovery and Data Mining,AAAI Press,1998:239-241.
  • 3[3]D Berndt & J Clifford.Using dynamic time warping to find patterns in time series[C].AAAI-94 Workshop on Knowledge Discovery in Databases(KDD-94),Seattle,Washington,1994.
  • 4[4]D T Pham and A B Chan.Control Chart Pattern Recognition using a New Type of Self Organizing Neural Network[C].Proc.Instn,Mech,Engrs.1998,212(1):115-127.

共引文献30

同被引文献46

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部