Biserial Incidence Algebras
Biserial Incidence Algebras
摘要
Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
基金
Foundation item: Supported by the National Natural Science Foundation of China(11271119)
Supported by the Natural Science Foundation of Beijing(1122002)
参考文献10
-
1DROZD YU A, KIRICHENKO V V. Finite Dimensional Algebras[M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
-
2AUSLANDER M, REITEN I, SMALO S O. Representation Theory of Artin Algebras[M]. Cambridge: Cambridge University Press, 1995.
-
3TACHIKAWA H. On algebras of which every indecomposable representation has an irreducible one as the top or the bottom Loewy constituent[J]. Math Z, 1961, 75: 215-227.
-
4FULLER K R. Biserial Rings, ia: Lecture Notes in Mathematics 734[C]. Berlin: Springer, 1979, 64-90.
-
5RINGFLC M. The Representation Type of Local Algebras, in: Lecture Notes in Mathematics 488[C]. Berlin: Springer, 1975, 282-305.
-
6SKOWROISKI A, WASCHB/JSCH J. Representation-finite biserial algebras[J]. J Reine Angew Math, 1983, 345: 172-181.
-
7WALD B, WASCHBOSCH J. Tame biserial algebras[J], J Algebras, 1985, 95(2): 480-500.
-
8POGORZALY Z. Regularly biserial algebras, in: Banaeh Center Publications 26, Part I[C]. Warsaw: PWN, 1990, 371-384.
-
9VILA-FREYER R, CRAWLEY-BOEVEY W. The structure of biserial algebras[J]. J London Math Soc, 1998, 57(1): 41-54.
-
10CRAWLEY-BOEVEY W. Tameness of biserial algebras[J]. Arch Math(Basel), 1995, 65(5): 399-407.
-
1Yun-ge XU Faculty of Mathematics & Computer Science,Hubei University,Wuhan 430062,China.Hochschild cohomology of special biserial algebras[J].Science China Mathematics,2007,50(8):1117-1128. 被引量:1
-
2邓邦明.Twisted double incidence algebras of type A_n[J].Science China Mathematics,2000,43(11):1164-1173.
-
3邓邦明.Distributive Functors[J].Science China Mathematics,1994,37(11):1281-1288.
-
4DENG BANGMING,XI CHANGCHANG.ON Δ-GOOD MODULE CATEGORIES OF QUASI-HEREDITARY ALGEBRAS[J].Chinese Annals of Mathematics,Series B,1997,18(4):467-480. 被引量:2