期刊文献+

Biserial Incidence Algebras

Biserial Incidence Algebras
下载PDF
导出
摘要 Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2014年第2期244-246,共3页 数学季刊(英文版)
基金 Foundation item: Supported by the National Natural Science Foundation of China(11271119) Supported by the Natural Science Foundation of Beijing(1122002)
关键词 biserial algebras incidence algebras representation type QUIVERS biserial algebras incidence algebras representation type quivers
  • 相关文献

参考文献10

  • 1DROZD YU A, KIRICHENKO V V. Finite Dimensional Algebras[M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 2AUSLANDER M, REITEN I, SMALO S O. Representation Theory of Artin Algebras[M]. Cambridge: Cambridge University Press, 1995.
  • 3TACHIKAWA H. On algebras of which every indecomposable representation has an irreducible one as the top or the bottom Loewy constituent[J]. Math Z, 1961, 75: 215-227.
  • 4FULLER K R. Biserial Rings, ia: Lecture Notes in Mathematics 734[C]. Berlin: Springer, 1979, 64-90.
  • 5RINGFLC M. The Representation Type of Local Algebras, in: Lecture Notes in Mathematics 488[C]. Berlin: Springer, 1975, 282-305.
  • 6SKOWROISKI A, WASCHB/JSCH J. Representation-finite biserial algebras[J]. J Reine Angew Math, 1983, 345: 172-181.
  • 7WALD B, WASCHBOSCH J. Tame biserial algebras[J], J Algebras, 1985, 95(2): 480-500.
  • 8POGORZALY Z. Regularly biserial algebras, in: Banaeh Center Publications 26, Part I[C]. Warsaw: PWN, 1990, 371-384.
  • 9VILA-FREYER R, CRAWLEY-BOEVEY W. The structure of biserial algebras[J]. J London Math Soc, 1998, 57(1): 41-54.
  • 10CRAWLEY-BOEVEY W. Tameness of biserial algebras[J]. Arch Math(Basel), 1995, 65(5): 399-407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部