期刊文献+

基于自适应神经模糊网络的果蔬抓取力控制 被引量:11

Griping Force Control Using Adaptive Neuro-fuzzy Inference Systems
下载PDF
导出
摘要 运用自适应神经模糊推理系统设计了农业机器人果蔬抓取力智能控制器。以当前抓取力和滑觉传感器信号的小波变换细节系数作为控制器的输入,末端执行器两指闭合距离作为控制器的输出。基于减法聚类建立模糊推理模型,通过调整聚类半径来优选模糊规则数。给出了训练样本数据集采集方法,并应用梯度下降与最小二乘混合训练算法辨识了控制器的前件参数和结论参数。对所设计的控制器进行了实验验证,结果表明该控制器能够适应果蔬质量、表面摩擦特性等方面的差异。抓取力超调量得到了限制,最大值小于0.8 N,可以避免给抓取对象造成机械损伤。 An intelligent controller using adaptive neuro-fuzzy inference system was developed to control the force of gripping fruits and vegetables of an agricultural robot. The inputs of the controller are the current griping force and the detail coefficients of discrete wavelet transform of the signal from slipping sensor fixed on the robotic end effector. The output of the controller is the displacement of fingers of the end effector. Firstly, a subtractive clustering was applied to generate a fuzzy model, and the radius of the clustering was adjusted to optimize the fuzzy rules. Then methods of sampling training data were introduced, and a hybrid training algorithm consisting of the gradient descent and least square algorithms was implemented to tune antecedent parameters and consequent part of the model. Finally, the experiments of controlling the griping force were carried out. It shows that the controller is able to adapt itself to differences of the fruits and vegetables in mass and surface friction characteristics. Moreover the controlling overshoot of griping force is restrained successfully and less than 0.8N, which prevented the grasping of fruits and vegetables from mechanical destruction.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2014年第7期67-72,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(31071325) 高等学校博士学科点专项科研基金资助项目(20130097110043)
关键词 农业机器人 抓取力控制 自适应神经模糊网络 减法聚类 Agricultural robot Control of gripping force ANFIS Subtractive clustering
  • 相关文献

参考文献19

二级参考文献213

共引文献639

同被引文献69

  • 1尚振东,王恒迪,马伟,毛晓波.一种高实时性滑觉传感器滑动程度判别模式[J].传感器技术,2005,24(2):16-18. 被引量:5
  • 2吴檀.三阶常系数非齐次线性微分方程的通解[J].北京科技大学学报,1994,16(2):195-199. 被引量:4
  • 3宋健,张铁中,徐丽明,汤修映.果蔬采摘机器人研究进展与展望[J].农业机械学报,2006,37(5):158-162. 被引量:217
  • 4Li ZhiGuo, Liu JiZhan, Li PingPing. Study on the collision-mechanical properties of tomatoes gripped by harvesting robot fingers[J]. African Journal of Biotechnology, 2009, 8(24): 7000-7007.
  • 5Shuichi W, Koichi S, Keiko O. Miniature pneumatic curling rubber actuator generating bidirectional motion with one air-supply tube[J]. Advanced Robotics, 2011, 25(9/10): 1311-1330.
  • 6Morris D M, Hebbar R, Newman W S. Force guided assemblies using a novel parallel manipulator[C]// Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on, 2011: 325-330.
  • 7Rabenorosoa K, Clévy C, Lutz P. Active force control for robotic micro-assembly: Application to guiding tasks[C]// Robotics and Automation 2010 IEEE International Conference on. IEEE, 2010: 2137-2142.
  • 8Huang S, Liu Yuchi, Hsiang S. Robotic end-effector impedance control without expensive torque/force sensor[J].World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2013, 7(7): 516-523.
  • 9Hogan N. Impedance control: An approach to manipulator: Part I-III[J]. Transactions of American Society of Mechanical Engineers, Journal of Dynamic System, Measure Control, 1985, 107(1): 1-24.
  • 10Fan Xinjian, Wang Xuelin, Xiao Yongfei. A combined 2D-3D vision system for automatic robot picking[C]// Proceedings of the 2014 International Conference on Advanced Mechatronic Systems, Kumamoto, Japan, 2014: 513-516.

引证文献11

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部