期刊文献+

以分子动力学模拟探究苹果酸脱氢酶的嗜极机制 被引量:1

Molecular dynamics simulations of malate dehydrogenase to explore extremophiles mechanism
原文传递
导出
摘要 为了研究嗜热酶、嗜冷酶在极端温度下维持稳定性和活性的机制,本文通过分子动力学模拟的方法,从原子尺度上分析了嗜热苹果酸脱氢酶及其同源嗜冷酶的分子动力学特性。数据显示嗜热酶所形成的盐桥和氢键明显多于嗜冷酶。通过比较均方根偏差、回旋半径、氨基酸残基的柔性等值,发现嗜热酶的结构较非嗜热酶更具刚性。盐桥、氢键数目的不同和整体结构的刚柔性,很可能会是嗜热、嗜冷酶在极端温度下能维持结构稳定的主要原因。 In order to explore the properties of thermophilic enzyme and psychrophilic enzyme further, this paper use molecular dynamics simulation to analysis malate dehydrogenase in atomic scale. The results found that, thermophilic enzyme can form more salt bridges and hydrogen bonds than the psychrophilic enzymes. By comparing the root mean square deviation, radius of gyration and end distance equivalent, we also found the structure of thermophilic enzyme is more rigid. The flexible of two amino acids residues of thermophilic enzyme is larger. Forming more hydrogen bonds and salt bridges and the rigidity of the whole structure is likely to be the main reason that thermophilic enzyme maintain its stability structure in high temperature.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第7期825-828,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(21376103) 福建省自然科学基金资助项目(2013J01048)
关键词 苹果酸脱氢酶 嗜热酶 嗜冷酶 分子动力学模拟 盐桥 malate dehydrogenase thermophilic enzyme psychrophilic enzymes molecular dynamics simulation salt bridge
  • 相关文献

参考文献13

  • 1Li W F, Zhou X X, Lu P. Structural features of thermozymes. Biotechnol Adv, 2005, 23(4):271-281.
  • 2Kim S Y, Hwang K Y, Kim S H, et al. Structural basis for coldadaptation sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile aquaspirillium arcticum. J Biol Chem, 1999, 274(17):11761-11767.
  • 3Birktoft J J, Rhodes G, Banaszak L J. Refined crystal structure of cytoplasmic malate dehydrogenase at 2.5-a resolution. Biochemistry-Us, 1989, 28(14):6065-6081.
  • 4Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with namd. J Comput Chem, 2005, 26(16):1781-1802.
  • 5Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph Model, 1996, 14(1):33-38.
  • 6Mackerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins J Phys Chem B, 1998, 102(18):3586-3616.
  • 7Darden T, York D, Pedersen L. Particle mesh ewald: an n.Log(n) method for ewald sums in large systems. J Chem Phys, 1993, 98: 10089.
  • 8Elcock A H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J Mol Biol, 1998, 284(2):489-502.
  • 9Kundu S, Roy D. Comparative structural studies of psychrophilic and mesophilic protein homologues by molecular dynamics simulation. J Mol Graph Model, 2009, 27(8):871-880.
  • 10Georlette D, Blaise V, Collins T, et al. Some like it cold: biocatalysis at low temperatures. Fems Microbiol Rev, 2004, 28(1) 25-42.

同被引文献8

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部