期刊文献+

分子动力学的聚合物流动诱导结晶取向数值模拟

Numerical simulation of the flow-induced crystallization orientation of polymer based on the molecular kinetic theory
原文传递
导出
摘要 聚合物的实际成型加工过程中,熔体在充填过程中不仅要受到热历史的作用,而且要受到剪切应力的作用,所以就不可避免地发生流动诱导结晶及取向现象。本文基于悬浮液理论和分子动力学方法,建立聚合物流动诱导结晶取向的数学模型,研究了剪切作用对结晶聚合物流动诱导结晶取向的影响。模型将结晶体系假设为结晶晶粒分散于无定型基质的悬浮液,通过取向张量计算取向因子,预测剪切过程中的晶相的取向行为。使用谱方法离散求解扩散方程,并计算取向分布函数和取向张量,模拟和分析了简单剪切场下结晶聚合物的流动诱导结晶取向行为。模拟结果表明,剪切强度对聚合物熔体的取向行为有着显著的影响,较高的剪切速率有助于晶区较早的完善取向。 Properties of polymer products depend on the morphology distribution within the product, which itself depends on both the molecular properties of the polymer used and the processing conditions applied during fabrication. In the present work, the shear effect on the crystallization of polypropylene was studied through flow-induced crystallization orientation. A model was then developed to predict the orientation of crystallinity, which based on the assumption that the crystallizing system was a suspension of crystalline entities growing and spreading in a matrix of amorphous material. Drawing on Jeffery's model of fiber orientation, the paper linked the deformation function with the orientation factor represented by tensors to predict the orientation of crystalline during shearing process. The spectral method was used for solving the diffusion equation to calculate the distribution function and orientation tensor. The orientation behavior for a simple shear flow was simulated and the primary parameters which affect the flow-induced crystallization orientation of crystalline polymer were analyzed.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2014年第7期877-880,共4页 Computers and Applied Chemistry
基金 河南省教育厅科学技术研究重点项目(13A430628) 教育部新世纪优秀人才支持计划(NCET-11-0951)
关键词 流动诱导结晶 谱方法 取向因子 flow-induced crystallization orientation factor spectral method
  • 相关文献

参考文献15

  • 1Zuidema H, Ph.D Thesis, University of Technology Eindhoven, the Netherlands, 2000.
  • 2Tribout C, Monasse B, Haudin J M. Experimental study of shear-induced crystallization of an impact polypropylene copolymer. Coil Polym Sci, 1996, 274:197-208.
  • 3Huo H, Meng Y, Li H, Jiang S, An L. Influence of shear on polypropylene crystallization kinetics. Eur Phys J E, 2004, 15:167-175.
  • 4Nogales A, Hsiao B S, Somani R H, Srinivas S, Tsou A H, Balta-Calleja F J, Ezquerra T A. Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer, 2001, 42:5247-5256.
  • 5Pantani R, Speranza V, Titomanlio G. Molecular orientation and strain in injection moulding of thermoplastics. Macromol Symp, 2002, 185:293-307.
  • 6Mendoza R, Regnier G, Seiler W, Lebrun J L. Spatial distribution of molecular orientation in injection molded iPP: influence of processing conditions. Polymer, 2003, 44:3363-3373.
  • 7Zheng R, Tanner R I, Fan X J. Injection Molding; Integration of Theory and Modeling Methods. Springer Verlag, 2011.
  • 8Isayev A I, Hieber C A. Toward a viscoelastic modelling of the injection molding of polymers. Rheol Acta, 1980, 19:168-182.
  • 9Mavridis H, Hrymak A N, Vlachopoulos J. The Effect of fountain flow on molecular orientation in injection molding. J Rheol, 1988, 32:639-663.
  • 10Kim I H, Park S J, Chung S T, Kwon T H. Numerical modeling of injection/compression molding for center-gated disk: Part I. Injection molding with viscoelastic compressible fluid model. Polym Eng Sci, 1999, 39:1930-1942.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部