期刊文献+

基于主成分分析和支持向量机的人眼注视识别 被引量:3

Recognition of eye gazing based on principle component analysis and support vector machine
下载PDF
导出
摘要 眼睛注视是人类传播信息的一个重要的媒介,实现对人眼注视与否的探知已经成为人机交互领域中一个亟需解决的问题。针对这个问题,首先采用主成分分析方法对人眼图像进行预处理,得到有利于人眼分类的一组低维特征系数,然后采用基于统计学习理论的支持向量机网络实现对人眼注视与否的判断,并通过大量的实验得出适合于人眼注视与否的最佳主成分特征维数。实验表明,在有限个样本的训练下,当PCA特征维数在18至23之间时,能够得到令人满意的结果,正确识别率均在91%之上,而特征维数为20时,测试样本被正确识别的比率最高,可达98.78%。 Eye gazing is an important medium of human communication, achieving the judgment of eyegazing with computers has become an urgent problem to be solved in the field of human-computerinteraction. For this problem, firstly this paper uses the principle component analysis to reprocess theeyes' images to get a set of low-dimensional characteristic coefficients, which is useful for the human eyeclassification, then the support vector machine which is based on statistical learning theory is used to giveout the judgment of gazing or not, and through a large of experiments, the feature dimension range whichare best suitable for the problem can be obtained. The experimental results show that when using limitedtraining samples, and the dimension of the principle component analysis characteristic coefficients isbetween 18 and 23, it can get a satisfactory result with its correct ratio more than 91%, especially whenthe feature dimension is 20, the proportion that the testing samples are identified correctly can beobtained as high as 98.78%.
出处 《信息技术》 2014年第7期163-166,170,共5页 Information Technology
关键词 人眼注视 统计学习理论 主成分分析 支持向量机 eye gazing statistical learning theory principle component analysis (PCA) supportvector machine (SVM)
  • 相关文献

参考文献14

二级参考文献66

  • 1郝群,刘伟华,李博.基于图像处理的人眼注视方向检测研究[J].光学技术,2004,30(5):547-548. 被引量:5
  • 2李素梅,张延,常胜江,申金媛,李宜宾,王立.基于SVM实现人眼注视与否的探知[J].光电子.激光,2004,15(10):1229-1233. 被引量:10
  • 3于威威,滕晓龙,刘重庆.一种快速准确的人眼定位方法[J].光电子.激光,2005,16(4):479-483. 被引量:5
  • 4Hjelmas E, Low B K. Face detection: a survey[J]. Computer Vision and Image Understanding, 2001, 86(3): 236- 274.
  • 5Pavlovic V I, Sharma R, Huang T S. Visual interpretation of hand gestures for human-computer interaction., a review[J]. IEEE Trans Pattern Anal & Machine Intelligence, 1997, 19(7): 677-695.
  • 6Taimi K, Liu J. Eye and gaze tracking for visually controlled interactive stereoscopic display[J]. Signal Processing: Image Communication, 1999, 14(10): 799-810.
  • 7Wang Yong, Yuan Jinghe, Chang Shengjian, et al. Gesture labeling based on gaze direction recognition for machine interaetion[J]. Optical Engineering, 2002, 41 (8): 1 840-1 847.
  • 8Sun Zhaolin. Image processing by MATLAB 6. X[M]. Beijing: Tsinghua University Press, 2002.
  • 9Werboss Paul. Beyond regression: New tools for prediction and analysis in the behavioral sciences[D]. MA: Appl math, Harvard University, 1974.
  • 10Parker D B. Learning-logic: Casting the cortex of the human brain in silicon, TR-47[R]. MA: M I T Center for Computational Research in Economics and Management Science, 1985.

共引文献19

同被引文献18

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部